
R Packages
Lecture 24

Dr. Colin Rundel

1Sta 523 - Fall 2023



What are R packages?
R packages are just a collection of files (R code, compiled code, data,
documentation, etc.) that live in your library path.

.libPaths()1

[1] "/Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library"

dir(.libPaths())1

  [1] "_cache"            "abind"            

  [3] "anytime"           "ape"              

  [5] "arrayhelpers"      "arrow"            

  [7] "AsioHeaders"       "askpass"          

  [9] "assertthat"        "astsa"            

 [11] "backports"         "base"             

 [13] "base64enc"         "bayesplot"        

 [15] "beeswarm"          "bench"            

 [17] "BH"                "bit"              

 [19] "bit64"             "blob"             

 [21] "bonsai"            "bookdown"         

 [23] "boot"              "brew"             

 [25] "bridgesampling"    "brio"             

 [27] "brms"              "Brobdingnag"      

 [29] "broom"             "broom.helpers"    

 [31] "broom.mixed"       "bsicons"          

[33] "bslib" "cachem" 2Sta 523 - Fall 2023



Search path
When you run library(pkg) the functions (and objects) in the package’s
namespace are attached to the global search path.

search()1

[1] ".GlobalEnv"        "package:stats"    

[3] "package:graphics"  "package:grDevices"

[5] "package:utils"     "package:datasets" 

[7] "package:methods"   "Autoloads"        

[9] "package:base"     

library(diffmatchpatch)1

search()1

 [1] ".GlobalEnv"            

 [2] "package:diffmatchpatch"

 [3] "package:stats"         

 [4] "package:graphics"      

 [5] "package:grDevices"     

 [6] "package:utils"         

 [7] "package:datasets"      

 [8] "package:methods"       

 [9] "Autoloads"             

[10] "package:base"          

3Sta 523 - Fall 2023



Loading vs attaching
If you do not want to attach a package you can directly use package functions
via :: or load the package with requireNamespace().

loadedNamespaces()1

 [1] "compiler"       "fastmap"       

 [3] "cli"            "graphics"      

 [5] "diffmatchpatch" "tools"         

 [7] "htmltools"      "rstudioapi"    

 [9] "utils"          "yaml"          

[11] "grDevices"      "Rcpp"          

[13] "stats"          "datasets"      

[15] "rmarkdown"      "knitr"         

[17] "methods"        "jsonlite"      

[19] "xfun"           "digest"        

[21] "rlang"          "base"          

[23] "evaluate"      

requireNamespace("forcats")1

loadedNamespaces()2

 [1] "digest"         "methods"       

 [3] "diffmatchpatch" "fastmap"       

 [5] "xfun"           "magrittr"      

 [7] "glue"           "knitr"         

 [9] "htmltools"      "rmarkdown"     

[11] "lifecycle"      "utils"         

[13] "cli"            "graphics"      

[15] "grDevices"      "stats"         

[17] "compiler"       "forcats"       

[19] "base"           "rstudioapi"    

[21] "tools"          "evaluate"      

[23] "Rcpp"           "yaml"          

[25] "rlang"          "jsonlite"      

[27] "datasets"      

4Sta 523 - Fall 2023



search()1

 [1] ".GlobalEnv"            

 [2] "package:diffmatchpatch"

 [3] "package:stats"         

 [4] "package:graphics"      

 [5] "package:grDevices"     

 [6] "package:utils"         

 [7] "package:datasets"      

 [8] "package:methods"       

 [9] "Autoloads"             

[10] "package:base"          

5Sta 523 - Fall 2023



Where do R packages come from?
We’ve already seen the two primary sources of R packages:

CRAN:

GitHub:

there is one other method that comes up (particularly around package
development), which is to install a package from local files.

Local install:

From the terminal,

or from R,

install.packages("diffmatchpatch")1

remotes::install_github("rundel/diffmatchpatch")1

R CMD install diffmatchpatch_0.1.0.tar.gz1

devtools::install("diffmatchpatch_0.1.0.tar.gz")1

6Sta 523 - Fall 2023



What is CRAN
The Comprehensive R Archive Network which is the central repository of R
packages.

Maintained by the R Foundation and run by a team of volunteers, ~20k
packages

Retains all current versions of released packages as well as archives of
previous versions

Similar in spirit to Perl’s CPAN, TeX’s CTAN, and Python’s PyPI

Some important features:

All submissions are reviewed by humans + automated checks

Strictly enforced submission policies and package requirements

All packages must be actively maintained and support upstream and
downstream changes

See Writing R Extensions
7Sta 523 - Fall 2023

https://cran.r-project.org/doc/manuals/r-release/R-exts.html


Structure of an R Package

From A Quickstart Guide for Building Your First R Package
8Sta 523 - Fall 2023

https://methodsblog.com/2015/11/30/building-your-first-r-package/


Core components
DESCRIPTION - file containing package metadata (e.g. package name,
description, version, license, and author details). Also specifies package
dependencies,

NAMESPACE - details which functions and objects are exported by your package

R/ - folder containing R script files (.R)

man/ - folder containing R documentation files (.Rd)

9Sta 523 - Fall 2023



Optional components
The following components are optional, but quite common:

tests/ - folder contain unit tests

src/ - folder containing code to be compiled (usually C / C++)

data/ - folder containing example data sets

inst/ - files that will be copied to the package’s top-level directory when it is
installed (e.g. C/C++ headers, examples or data files that don’t belong in
data/)

vignettes/ - long form documentation, can be static (.pdf or .html) or
literate documents (e.g. .qmd, .Rmd or .Rnw)

10Sta 523 - Fall 2023



Package contents
Source Package Installed Package

fs::dir_tree("~/Desktop/Projects/diffmatchpatch/1

~/Desktop/Projects/diffmatchpatch/

├── DESCRIPTION

├── LICENSE.md

├── NAMESPACE

├── NEWS.md

├── R

│   ├── RcppExports.R

│   ├── diff.R

│   ├── diffmatchpatch-package.R

│   ├── match.R

│   ├── options.R

│   ├── patch.R

│   └── print.R

├── README.Rmd

├── README.md

├── cran-comments.md

├── diffmatchpatch.Rproj

fs::dir_tree(system.file(package="diffmatchpatch1

/Library/Frameworks/R.framework/Versions/4.3-

arm64/Resources/library/diffmatchpatch

├── DESCRIPTION

├── INDEX

├── Meta

│   ├── Rd.rds

│   ├── features.rds

│   ├── hsearch.rds

│   ├── links.rds

│   ├── nsInfo.rds

│   └── package.rds

├── NAMESPACE

├── NEWS.md

├── R

│   ├── diffmatchpatch

│   ├── diffmatchpatch.rdb

│   └── diffmatchpatch.rdx

11Sta 523 - Fall 2023



Package Installation

R Packages (1e) - Chap. 4
12Sta 523 - Fall 2023



Package Installion - Files

Sta 523 - Fall 2023



13Sta 523 - Fall 2023



From R Packages (2e) - Chap. 3.3

Package development
What follows is an opinionated introduction to package development,

this is not the only way to do thing (none of the following are required)

I would strongly recommend using:

RStudio

RStudio projects

GitHub

usethis

roxygen2

Read and follow along with R Packages (2e) - Chap. 1 - “The Whole Game”

14Sta 523 - Fall 2023

https://r-pkgs.org/structure.html#sec-bundled-package
https://r-pkgs.org/whole-game.html


16Sta 523 - Fall 2023



usethis
This is an immensely useful package for automating all kinds of routine (and
tedious) tasks within R

Tools for managing git and GitHub configuration

Tools for managing collaboration on GitHub via pull requests (see pr_*())

Tools for creating and configuring packages

Tools for configuring your R environment (e.g. .Rprofile and .Renviron)

and much much more

17Sta 523 - Fall 2023



Live demo
Building a Package

19Sta 523 - Fall 2023



Choosing a license
An important early step in developing a package is choosing a license - this is
not trivial but is important to do early on, particularly if collaborating with
others.

There are many resources available to help you choose a license, including:

https://choosealicense.com/

20Sta 523 - Fall 2023

https://choosealicense.com/


Package data

22Sta 523 - Fall 2023



Exported data
Many packages contain sample data (e.g. nycflights13, babynames, etc.)

Generally these files are made available by saving a single data object as an
.Rdata file (using save()) into the data/ directory of your package.

An easy option is to use usethis::use_data(obj) to create the necessary
file(s)

Data is usually compressed, for large data sets it may be worth trying
different options (there is a 5 Mb package size limit on CRAN)

Exported data must be documented (possible via roxygen)

23Sta 523 - Fall 2023



Lazy data
By default when attaching a package all of that packages data is loaded -
however if LazyData: true is set in the packages’ DESCRIPTION then data is only
loaded when used.

pryr::mem_used()1

47.9 MB

library(nycflights13)1

pryr::mem_used()2

51.7 MB

If you use usethis::use_data() this option will be set in DESCRIPTION
automatically.

invisible(flights)1

pryr::mem_used()2

92.4 MB

24Sta 523 - Fall 2023



Raw data
When published a package should generally only contain the final data set, but
it is important that the process to generate the data is documented as well as
any necessary preliminary data.

These can live any where but the general suggestion is to create a data-raw/
directory which is included in .Rbuildignore

data-raw/ then contain scripts, data files, and anything else needed to
generate the final object

See examples  or 

Use usethis::use_data_raw() to create and ignore the data-raw/ directory.

babynames nycflights

25Sta 523 - Fall 2023

https://github.com/hadley/babynames
https://github.com/hadley/nycflights13


Internal data
If you have data that you want to have access to from within the package but
not exported then it needs to live in a special Rdata object located at
R/sysdata.rda.

Can be created using usethis::use_data(obj1, obj2, internal = TRUE)

Each call to the above will overwrite, so needs to include all objects

Not necessary for small data frames and similar objects - just create in a
script. Use when you want the object to be compressed.

Example  which contains team logos and colors for NFL teams.nflplotR

26Sta 523 - Fall 2023

https://github.com/nflverse/nflplotR/tree/main/R


Raw data files
If you want to include raw data files (e.g .csv, shapefiles, etc.) there are
generally placed in inst/ (or a nested folder) so that they are installed with the
package.

Accessed using system.file("dir", package = "package") after install

Use folders to keep things organized, Hadley recommends and uses
inst/extdata/

Example sf

27Sta 523 - Fall 2023

https://github.com/r-spatial/sf/tree/master/inst


Package vigenette

29Sta 523 - Fall 2023



Vignette
Long form documentation for your package that live in vignette/, use
browseVignette(pkg) to see a package’s vignettes.

Not required, but adds a lot of value to a package

Generally these are literate documents (.Rmd, .Rnw) that are compiled to
.html or .pdf when the package is built.

Built packages retain the rendered document, the source document, and all
source code

vignette("colwise", package = "dplyr") opens rendered version

edit(vignette("colwise", package = "dplyr")) opens code chunks

Use usethis::use_vignette() to create a RMarkdown vignette template

30Sta 523 - Fall 2023



Articles
These are an un-official extension to vignettes where package authors wish to
include additional long form documentation that is included in their pkgdown
site but not in the package (usually for space reasons).

Use usethis::use_article() to create

Files are added to vignette/articles/ which is added to .Rbuildignore

31Sta 523 - Fall 2023



Package checking

33Sta 523 - Fall 2023



R CMD check
Last time we saw the usage of R CMD check, or rather Build > Check Package
from within RStudio.

This is a good idea to run regularly to make sure nothing is broken and you are
meeting the important package quality standards, but this only in the context of
your machine, your version of R, your OS, and so on.

If using GitHub it is highly recommended that you run
usethis::use_github_action_check_standard() to enable GitHub actions
checks of the package each time it is pushed.

On each push this runs R CMD check on: * Latest R on MacOS, Windows, Linux
(Ubuntu) * Previous and devel version of R on Linux (Ubuntu)

34Sta 523 - Fall 2023



Package testing

36Sta 523 - Fall 2023



Basic test structure
Package tests live in tests/,

Any R scripts found in the folder will be run when Checking the package (not
Building)

Generally tests fail on errors, but warnings are also tracked

Testing is possible via base R, including comparison of output vs. a file but it
is not recommended (See )

Note that R CMD check also runs all documentation examples (unless
explicitly tagged dont run) - which can be used for basic testing

Writing R Extensions

37Sta 523 - Fall 2023

https://cran.r-project.org/doc/manuals/r-release/R-exts.html#Package-subdirectories


38Sta 523 - Fall 2023



testthat basics
Not the only option but probably the most widely used and with the best
integration into RStudio.

Can be initialized in your project via usethis::use_testthat() which creates
tests/testthat/ and some basic scaffolding.

test/testthat.R is what is run by R CMD Check and runs your other tests -
handles some basic config like loading package(s)

Test scripts go in tests/testthat/ and should start with test_, suffix is
usually the file in R/ that is being tested.

usethis::use_testthat() has an edition argument, this is a way of maintaining backwards compatibility, generally
39Sta 523 - Fall 2023



testthat script structure
From the bottom up,

a single test is written as an expectation (e.q. expect_equal(),
expect_error(), etc.)

multiple related expectations are combined into a test group (test_that()),
which provides

a human readable name and

local scope to contain the expectations and any temporary objects

multiple test groups are combined into a file

40Sta 523 - Fall 2023



Sta 523 - Fall 2023


