
make
Lecture 15

Dr. Colin Rundel

1Sta 523 - Fall 2023

make
build tool for the creation of software / libraries / documents by specifying
dependencies

Almost any process that has files as input and outputs can be automated
via make

Originally created by Stuart Feldman in 1976 at Bell Labs

Almost universally available (all flavors of unix / linux / MacOS / Windows w/
RTools)

Dependencies are specified using a Makefile with a simple syntax

2Sta 523 - Fall 2023

Makefile
A Makefile provides a list of target files along, their dependencies, and the
steps necessary to generate each of the targets from the dependencies.

In the above example target* and depend* are all just files (given by a relative
or absolute path).

target1: depend1 depend2 depend3 ...

 step1

 step2

 step3

 ...

depend1: depend1.1

 step1.1

 step1.2

3Sta 523 - Fall 2023

Makefile (basic example)
paper.html: paper.Rmd fig1/fig.png fig2/fig.png1

 Rscript -e "rmarkdown::render('paper.Rmd')"2

3

fig1/fig.png: fig1/fig.R4

 Rscript fig1/fig.R5

6

fig2/fig.png: fig2/fig.R7

 Rscript fig2/fig.R8

4Sta 523 - Fall 2023

Smart Building
Because the Makefile specifies the dependency structure make knows when a
file has changed (by examining the file’s modification timestamp) and only runs
the steps that depend on the file(s) that have changed.

After running make the first time, I edit paper.Rmd, what steps run if I run make
again?

What about editing fig1/fig.R?

5Sta 523 - Fall 2023

Variables
Like R or other language we can define variables

R_OPTS=--no-save --no-restore --no-site-file --no-init-file --no-environ1

2

fig1/fig.png: fig1/fig.R3

 cd fig1;Rscript $(R_OPTS) fig.R4

6Sta 523 - Fall 2023

Special Targets
By default if you run make without arguments it will attempt to build the first target in the
Makefile (whose name does not start with a .). By convention we often include an all
target which explicitly specifies how to build everything within the project.

all is an example of what is called a phony target - because there is no file named all
in the directory. Other common phony targets:

clean - remove any files created by the Makefile, restores to the original state

install - for software packages, installs the compiled programs / libraries / header
files

Optionally, we specify all phony targets by including a line with .PHONY as the target and
the phony targets as dependencies, i.e.:

.PHONY: all clean install1

7Sta 523 - Fall 2023

Builtin / Automatic Variables
$@ - the file name of the target

$< - the name of the first dependency

$^ - the names of all dependencies

$(@D) - the directory part of the target

$(@F) - the file part of the target

$(<D) - the directory part of the first dependency

$(<F) - the file part of the first dependency

See GNU make for a complete listdocumentation
8Sta 523 - Fall 2023

https://www.gnu.org/software/make/manual/html_node/Automatic-Variables.html

Pattern Rules
Often we want to build several files in the same way, in these cases we can use
% as a special wildcard character to match both targets and dependencies.

So we can go from

to

fig1/fig.png: fig1/fig.R1

 cd fig1;Rscript fig.R2

3

fig2/fig.png: fig2/fig.R4

 cd fig2;Rscript fig.R5

fig%/fig.png: fig%/fig.R1

 cd $(<D);Rscript $(<F)2

9Sta 523 - Fall 2023

Makefile (fancier example)
all: paper.html1

2

paper.html: paper.Rmd fig1/fig.png fig2/fig.png3

 Rscript -e "library(rmarkdown);render('paper.Rmd')"4

5

Fig%/fig.png: Fig%/fig.R6

 cd $(<D);Rscript $(<F)7

8

clean:9

 rm -f paper.html10

 rm -f Fig*/*.png11

12

.PHONY: all clean13

10Sta 523 - Fall 2023

Live Demo
HW4 Makefile

11Sta 523 - Fall 2023

Sta 523 - Fall 2023

