make

Lecture 15

Dr. Colin Rundel

Sta 523 - Fall 2023

make
e build tool for the creation of software / libraries / documents by specifying
dependencies

= Almost any process that has files as input and outputs can be automated
via make

e Originally created by Stuart Feldman in 1976 at Bell Labs

e Almost universally available (all flavors of unix / linux / MacOS / Windows w/
RTools)

e Dependencies are specified using a Makefile with a simple syntax

Sta 523 - Fall 2023

Makefile

A Makefile provides a list of target files along, their dependencies, and the
steps necessary to generate each of the targets from the dependencies.

targetl: dependl depend2 depend3 ...
stepl
step2
step3

dependl: dependl.l
stepl.l
stepl.2

In the above example targetx and dependx* are all just files (given by a relative
or absolute path).

Sta 523 - Fall 2023

Makefile (basic example)

paper.html: paper.Rmd figl/fig.png fig2/fig.png

Rscript -e "rmarkdown::render('paper.Rmd')"

figl/fig.png: figl/fig.R
Rscript figl/fig.R

fig2/fig.png: fig2/fig.R
Rscript fig2/fig.R

Sta 523 - Fall 2023

Smart Building

Because the Makefile specifies the dependency structure make knows when a
file has changed (by examining the file’s modification timestamp) and only runs
the steps that depend on the file(s) that have changed.

o After running make the first time, I edit paper.Rmd, what steps run if I run make
again?

e What about editing figl/fig.R?

Sta 523 - Fall 2023

Variables

Like R or other language we can define variables

R OPTS=--no-save --no-restore --no-site-file --no-init-file --no-environ

figl/fig.png: figl/fig.R
cd figl;Rscript $(R_OPTS) fig.R

Sta 523 - Fall 2023

Special Targets

By default if you run make without arguments it will attempt to build the first target in the
Makefile (whose name does not start with a .). By convention we often include an all
target which explicitly specifies how to build everything within the project.

all is an example of what is called a phony target - because there is no file named all
in the directory. Other common phony targets:

e clean - remove any files created by the Makefile, restores to the original state

e install - for software packages, installs the compiled programs / libraries / header
files

Optionally, we specify all phony targets by including a line with . PHONY as the target and
the phony targets as dependencies, i.e.:

.PHONY: all clean install

Sta 523 - Fall 2023

Builtin / Automatic Variables

e $@ - the file name of the target

e $< - the name of the first dependency

e $~ - the names of all dependencies

e $(@D) - the directory part of the target

e $(@F) - the file part of the target

e $(<D) - the directory part of the first dependency
e $(<F) - the file part of the first dependency

_ _ Sta 523 - Fall 2023
See GNU make documentation for a complete list

https://www.gnu.org/software/make/manual/html_node/Automatic-Variables.html

Pattern Rules

Often we want to build several files in the same way, in these cases we can use
% as a special wildcard character to match both targets and dependencies.

So we can go from

figl/fig.png: figl/fig.R
cd figl;Rscript fig.R

fig2/fig.png: fig2/fig.R
cd fig2;Rscript fig.R

to

fig%/fig.png: fig%/fig.R
cd $(<D);Rscript S$(<F)

Sta 523 - Fall 2023

Makefile (fancier example)

all: paper.html

paper.html: paper.Rmd figl/fig.png fig2/fig.png

Rscript -e "library(rmarkdown);render('paper.Rmd')"

Fig%/fig.png: Fig%/fig.R
cd $(<D);Rscript $(<F)

clean:
rm -f paper.html

rm -f Fig*/*.png

.PHONY: all clean

Sta 523 - Fall 2023

Live Demo
HW4 Makefile

Sta 523 - Fall 2023

