
Filesystems &
Denny’s + LQ scraping

Lecture 14

Dr. Colin Rundel

1Sta 523 - Fall 2023

Filesystems
Pretty much all commonly used operating systems make use of a hierarchically
structured filesystem.

This paradigm consists of directories which can contain files and other
directories (which can then contain other files and directories and so on).

From of Automate the Boring Stuff with PythonChp 9
2Sta 523 - Fall 2023

https://automatetheboringstuff.com/2e/chapter9/

Absolute vs relative paths
Paths can either be absolute or relative, and the difference is very important.
For portability reasons you should almost never use absolute paths.

Absolute path examples

Relative path examples

/var/ftp/pub1

/etc/samba.smb.conf2

/boot/grub/grub.conf3

Sta523/filesystem/1

data/access.log2

filesystem/nelle/pizza.cfg3

3Sta 523 - Fall 2023

Special directories
dir(path = "data/")1

[1] "ak" "gis" "lego_sales.rds"

[4] "movies" "office_ratings.csv" "phone.csv"

[7] "pvec_res.Rdata" "us"

dir(path = "data/", all.files = TRUE)1

 [1] "." ".." ".DS_Store"

 [4] "ak" "gis" "lego_sales.rds"

 [7] "movies" "office_ratings.csv" "phone.csv"

[10] "pvec_res.Rdata" "us"

Files and directorie starting with . are hidden by default, in the terminal use ls -a
4Sta 523 - Fall 2023

dir(path = "../")1

[1] "css" "slides"

dir(path = "data/../../")1

[1] "css" "slides"

dir(path = "../../")1

 [1] "_extensions" "config.yaml" "data" "docs"

 [5] "layouts" "Makefile" "README.md" "resources"

 [9] "static" "test" "website.Rproj"

5Sta 523 - Fall 2023

Home directory and ~
Tilde (~) is a shortcut that expands to the name of your home directory on unix-
like systems.

If you append a user’s login to ~, it then refers to that user’s home directory
(e.g. ~cr173).

dir(path = "~/")1

 [1] "ansible" "Applications" "Books" "Calibre Library"

 [5] "Desktop" "Documents" "Downloads" "Dropbox"

 [9] "Edward Jones" "Google Drive" "Icon\r" "Library"

[13] "Movies" "Music" "My Drive" "opt"

[17] "OrbStack" "Pictures" "Public" "Scratch"

[21] "Sites" "Sync" "tm-log.sh" "tmp"

6Sta 523 - Fall 2023

Why ~?
Below is the keyboard from an terminal from the 1970s,ADM-3A

See “Stop Writing Dead Programs” by Jack Rusher (Strange Loop 2022)
7Sta 523 - Fall 2023

https://en.wikipedia.org/wiki/ADM-3A
https://www.youtube.com/watch?v=8Ab3ArE8W3s

Working directories
R (and OSes) have the concept of a working directory, this is the directory
where a program / script is being executed and determines the absolute path
of any relative paths used.

getwd()1

[1] "/Users/rundel/Desktop/Sta523-Fa23/website/static/slides"

setwd("~/")1

getwd()2

[1] "/Users/rundel"

8Sta 523 - Fall 2023

Source: Jenny Bryan’s Zen and the Art of Workflow Maintenance
9Sta 523 - Fall 2023

https://speakerdeck.com/jennybc/zen-and-the-art-of-workflow-maintenance

RStudio and Working Directories
Just like R, RStudio also makes use of a working directory for each of your
sessions - we haven’t had to discuss these yet because when you use an
RStudio project, the working directory is automatically set to the directory
containing the Rproj file.

This makes your project portable as all you need to do is to send the project
folder to a collaborator (or push to GitHub) and they can open the project file
and have identical relative path structure.

10Sta 523 - Fall 2023

here
Thus far we’ve dealt with mostly simple project organizational structures - all
the code has lived in the root directory and sometimes we’ve had a separate
data directory for other files. As organization gets more complex to known what
the working directory will be for a given script or RMarkdown document.

here is a package that tries to simplify this process by identifying the root of
your project for you using simple heuristics and then providing relative paths
from that root directory to everything else in your project.

here::here()1

[1] "/Users/rundel/Desktop/Sta523-Fa23/website/static/slides"

here::here("data/")1

[1] "/Users/rundel/Desktop/Sta523-Fa23/website/static/slides/data/"

here::here("../../data/")1

[1] "/Users/rundel/Desktop/Sta523-Fa23/website/static/slides/../../data/"

11Sta 523 - Fall 2023

Rules of here::here()
The project root is established with a call to here::i_am(). Although not recommended, it can be
changed by calling here::i_am() again.

In the absence of such a call (e.g. for a new project), starting with the current working directory
during package load time, the directory hierarchy is walked upwards until a directory with at least
one of the following conditions is found:

contains a file .here

contains a file matching [.]Rproj$ with contents matching ^Version: in the first line

contains a file DESCRIPTION with contents matching ^Package:

contains a file remake.yml

contains a file .projectile

contains a directory .git

contains a file .git with contents matching ^gitdir:

contains a directory .svn

In either case, here() appends its arguments as path components to the root directory.

12Sta 523 - Fall 2023

Other useful filesystem functions
dir() - list the contents of a directory

basename() - Removes all of the path up to and include the last path
separator (/)

dirname() - Returns the path up to but excluding the last path separator

file.path() - a useful alternative to paste0() when combining paths (and
urls) as it will add a / when necessary.

unlink() - delete files and or directories

dir.create() - create directories

fs package - collection of filesystem related tools based on unix cli tools
(e.g. ls)

13Sta 523 - Fall 2023

Denny’s and LQ Scraping
Demo

14Sta 523 - Fall 2023

Sta 523 - Fall 2023

