Web Scraping

Lecture 12

Dr. Colin Rundel

Sta 523 - Fall 2023

Oﬂ/ﬂﬂ///ﬂﬂﬂwﬂ§/
<z 77

S —
R N—

A\ AN, ———————
—~=SRRRAE AR RRE

7777 \A\V. 7

Sta 523 - Fall 2023

Hypertext Markup Language

Most of the data on the web is still largely available as HTML - while it is
structured (hierarchical) it often is not available in a form useful for analysis
(flat / tidy).

<html>
<head>
<title>This is a title</title>
</head>
<body>
<p align="center">Hello world!</p>

<div class="name" id="first">John</div>
<div class="name" id="last">Doe</div>
<div class="contact">
<div class="home">555-555-1234</div>
<div class="home">555-555-2345</div>
<div class="work">555-555-9999</div>
<div class="fax">555-555-8888</div>
</div>
</body>
</html>

Sta 523 - Fall 2023

rvest

rvest is a package from the tidyverse that makes basic processing and manipulation of
HTML data straight forward. It provides high level functions for interacting with html via
the xml2 library.

Core functions:

e read_html() - read HTML data from a url or character string.

e html _elements() / hitml nodes() - select specified elements from the HTML document
using CSS selectors (or xpath).

e html_element() / hitml node() - select a single element from the HTML document
using CSS selectors (or xpath).

e html_table() - parse an HTML table into a data frame.
e html_text() / html_text2() - extract tag’s text content.
e html_name - extract a tag/element’s name(s).

e html_attrs - extract all attributes.

e html _attr - extract attribute value(s) by name.

Sta 523 - Fall 2023

html, rvest, & xml2

1 html = 1 read html(html)

2 '<html>

3 <head> {html document}

4 <title>This is a title</title> <html>

5 </head> [1] <head>\n<meta http-equiv="Content-Type"
6 <body> content="text/html; charset=UTF-8 ...

7 <p align="center">Hello world!</p> [2] <body>\n <p align="center">Hello world!
8
 </p>\n
<div class="name" ...

9 <div class="name" id="first">John</div>

10 <div class="name" id="last">Doe</div>

11 <div class="contact">

12 <div class="home">555-555-1234</div>

13 <div class="home">555-555-2345</div>

14 <div class="work">555-555-9999</div>

15 <div class="fax">555-555-8888</div>

16 </div>

17 </body>

18 </html>"'

Sta 523 - Fall 2023

Selecting elements

read html(html) |> html elements("p")

{xml nodeset (1)}
[1] <p align="center">Hello world!</p>

read html(html) |> html elements("p") |> html text()
[1] "Hello world!"

read html(html) |> html elements("p") |> html name()
[1] "p"

read html(html) |> html elements("p") |> html attrs()

[[1]]
align

"center"
read html(html) |> html elements("p") |> html attr("align")

[1] "center" Sta 523 - Fall 2023

More selecting tags

read_html(html) |> html elements("div")

{xml nodeset (7)}

[1] <div class="name" id="first">John</div>

[2] <div class="name" id="last">Doe</div>

[3] <div class="contact">\n <div class="home">555-555-1234</div>\n cen
[4] <div class="home">555-555-1234</div>

[5] <div class="home">555-555-2345</div>

[6] <div class="work">555-555-9999</div>

[7] <div class="fax">555-555-8888</div>

read html (html) |> html elements("div") |> html text()

[1] "John"
[2] "Doe"
[3] "\n 555-555-1234\n 555-555-2345\n 555-555-9999\n 555-555-8888\n

[4] "555-555-1234"
[5] "555-555-2345"
[6] "555-555-9999"
[7] "555-555-8888"

Sta 523 - Fall 2023

Nesting tags
read html(html) |> html elements("body div")

{xml nodeset (7)}
[1] <div class="name" id="first">John</div>
[2] <div class="name" id="last">Doe</div>

[3] <div class="contact">\n <div class="home">555-555-1234</div>\n

[4] <div class="home">555-555-1234</div>
[5] <div class="home">555-555-2345</div>
[6] <div class="work">555-555-9999</div>
[7] <div class="fax">555-555-8888</div>

read html(html) |> html elements("body>div")

{xml nodeset (3)}
[1] <div class="name" id="first">John</div>
[2] <div class="name" id="last">Doe</div>

[3] <div class="contact">\n <div class="home">555-555-1234</div>\n

Sta 523 - Fall 2023

read html(html)

{xml nodeset (4)}

[1] <div
[2] <div
[3] <div
[4] <div

class="home">555-555-1234</div>
class="home">555-555-2345</div>
class="work">555-555-9999</div>
class="fax">555-555-8888</div>

Sta 523 - Fall 2023

|> html elements("body div div")

10

css selectors

We will be using a tool called selector gadget to help up identify the html
elements of interest - it does this by constructing a css selector which can be
used to subset the html document.

Some examples of basic selector syntax is below,

Selector Example Description

.class .title Select all elements with class="title”

#id #name Select all elements with id=“name”

element P Select all <p> elements

element element div p Select all <p> elements inside a <div> element
element>element div > p Select all <p> elements with <div> as a parent
[attribute] [class] Select all elements with a class attribute
[attribute=value] [class=title] Select all elements with class="title”

There are also a number of additional combinators and pseudo-classes that
improve flexibility, see examples here.

Sta 523 - Fall 2023

11

https://www.w3schools.com/cssref/css_selectors.asp

CSS classes and ids

read html(html) |> html elements(".name")

{xml nodeset (2)}
[1] <div class="name" id="first">John</div>

[2] <div class="name" id="last">Doe</div>

read html(html) |> html elements("div.name")

{xml nodeset (2)}
[1] <div class="name" id="first">John</div>

[2] <div class="name" id="last">Doe</div>

read html(html) |> html elements("#first")

{xml nodeset (1)}

[1] <div class="name" id="first">John</div>

Sta 523 - Fall 2023

12

Mixing 1t up
read html(html) |> html elements("[align]")

{xml nodeset (1)}
[1] <p align="center">Hello world!</p>

read html(html) |> html elements(".contact div")

{xml nodeset (4)}

[1] <div class="home">555-555-1234</div>
[2] <div class="home">555-555-2345</div>
[3] <div class="work">555-555-9999</div>
[4] <div class="fax">555-555-8888</div>

Sta 523 - Fall 2023

html_text() vs html_text2()

html = read html(

n <p>
This is the first sentence in the paragraph.
This is the second sentence that should be on the same line as the first

</p> n

html |> html text()

[1] " \n This is the first sentence in the paragraph.\n This is the
second sentence that should be on the same line as the first sentence.This third

sentence should start on a new line.\n
html |[> html text2()

[1] "This is the first sentence in the paragraph. This is the second sentence
that should be on the same line as the first sentence.\nThis third sentence

should start on a new line."

Sta 523 - Fall 2023

14

html |> html text() |> cat(sep="\n")

This is the first sentence in the paragraph.
This is the second sentence that should be on the same line as the first

sentence.This third sentence should start on a new line.

html |> html text2() |> cat(sep="\n")

This is the first sentence in the paragraph. This is the second sentence that
should be on the same line as the first sentence.

This third sentence should start on a new line.

Sta 523 - Fall 2023

html tables

1 html table = 1 read html(html table) |>
2 '<html> 2 html elements("table") |>
3 <head> 3 html table()

4 <title>This is a title</title>

5 </head> [[1]1]

6 <body> # A tibble: 3 x 3

7 <table> a b c

8 <tr> <th>a</th> <th>b</th> <th>c</th> </t <int> <int> <int>

9 <tr> <td>1</td> <td>2</td> <td>3</td> </tr 1 2 3

10 <tr> <td>2</td> <td>3</td> <td>4</td> </tr 2 3 4

11 <tr> <td>3</td> <td>4</td> <td>5</td> </tr 3 4 &)

12 </table>

13 </body>
14 </html>"

Sta 523 - Fall 2023

SelectorGadget

This 1s a javascript based tool that helps you interactively build an appropriate
CSS selector for the content you are interested in.

a8 nao The Lego Movie (2014) - IMDb . "
WXL G STAPS: JOOqUIT PTICENTL, AMY 5

.. Batman / Bruce Wayne (voice)

.. Wyldstyle / Lucy (woice)

.. Blake [Additional Violces (voice)

.+ Unikitty (voice)

Octan Robot f Additional Voices (voice)

. C-3P0 (woice)

dtemprop Clear (49)

Toggle Position XPath Help X

selectorgadget.com
Sta 523 - Fall 2023

17

http://selectorgadget.com/

Web scraping considerations

“Can you?” vs “Should you?”

Researchers just released profile data on
70,000 OkCupid users without permission

By Brian Resnick | @B_resnick | brian@vox.com | May 12,2016, 6:00pm EDT

A group of researchers has released a data set on nearly 70,000 users of the online dating site
OkCupid. The data dump breaks the cardinal rule of social science research ethics: It took
identifiable personal data without permission.

The information — while publicly available to OkCupid users — was collected by Danish
researchers who never contacted OkCupid or its clientele about using it.

The data, collected from November 2014 to March 2015, includes user names, ages, gender,
religion, and personality traits, as well as answers to the personal questions the site asks to
help match potential mates. The users hail from a few dozen countries around the world.

The data dump did not reveal anyone's real name. But it's entirely possible to use clues from a
user's location, demographics, and OkCupid user name to determine their identity.
If your OkC username is one you've used anywhere else, | now know your sexual

preferences & kinks, your answers to thousands of questions.

— Scott B. Weingart (@scott_bot) May 11, 2016

))) Sta 523 - Fall 2023)) o 20
Source: Brian Resnick, Researchers just released profile data on 709,000 OkCupid users without permission, Vox.

https://www.vox.com/2016/5/12/11666116/70000-okcupid-users-data-release

“Can you?” vs “Should you?”

Emil OW Kirkegaard © KirkegaardEmil - May 8
The OKCupid paper has now been submitted. This means that the dataset is
now public! Enjoy! :)

Ethan Jewett “esjewett - May 11
This data set is highly re-identifiable. Even includes
usernames? Was any work at all done to anonymize it?

Emil OW Kirkegaard {x 2 Follow
KirkegaardEmil

No. Data is already public.

Sta 523 - Fall 2023

21

Scraping permission & robots.txt

There is a standard for communicating to users if it is acceptable to automatically
scrape a website via the robots exclusion standard or robots. txt.

You can find examples at all of your favorite websites: google, facebook, etc.

These files are meant to be machine readable, but the polite package can handle this
for us (and much more).

polite: :bow("http://google.com")

<polite session> http://google.com
User-agent: polite R package
robots.txt: 313 rules are defined for 4 bots
Crawl delay: 5 sec
The path is scrapable for this user-agent

polite: :bow("http://facebook.com")

<polite session> http://facebook.com
User-agent: polite R package
robots.txt: 525 rules are defined for 21 bots
Crawl delay: 5 sec
The path is not scrapable for this user-agent

Sta 523 - Fall 2023

https://en.wikipedia.org/wiki/Robots_exclusion_standard
https://www.google.com/robots.txt
https://facebook.com/robots.txt

Example - Rotten Tomatoes

For the movies listed in Popular Streaming Movies list on rottentomatoes. com
create a data frame with the Movies’ titles, their tomatometer score, and
whether the movie is fresh or rotten, and the movie’s url.

Sta 523 - Fall 2023

23

Exercise 1

Using the url for each movie, now go out and grab the number of reviews, the
runtime, and number of user ratings.

If you finish that you can then try to scrape the MPAA rating and the audience
score,.

Sta 523 - Fall 2023

24

Sta 523 - Fall 2023

