Lecture 06
Happy families are all alike; every unhappy family is unhappy in its own way
— Leo Tolstoy, Anna Karenina
# A tibble: 317 × 7
artist track date.entered wk1 wk2 wk3 wk4
<chr> <chr> <date> <dbl> <dbl> <dbl> <dbl>
1 2 Pac Baby Don't Cry (Kee… 2000-02-26 87 82 72 77
2 2Ge+her The Hardest Part Of… 2000-09-02 91 87 92 NA
3 3 Doors Down Kryptonite 2000-04-08 81 70 68 67
4 3 Doors Down Loser 2000-10-21 76 76 72 69
5 504 Boyz Wobble Wobble 2000-04-15 57 34 25 17
6 98^0 Give Me Just One Ni… 2000-08-19 51 39 34 26
7 A*Teens Dancing Queen 2000-07-08 97 97 96 95
8 Aaliyah I Don't Wanna 2000-01-29 84 62 51 41
9 Aaliyah Try Again 2000-03-18 59 53 38 28
10 Adams, Yolanda Open My Heart 2000-08-26 76 76 74 69
# ℹ 307 more rows
Is the above data set tidy?
Is the following data tidy?
List of 3
$ :List of 8
..$ name : chr "Luke Skywalker"
..$ height : chr "172"
..$ mass : chr "77"
..$ hair_color: chr "blond"
..$ skin_color: chr "fair"
..$ eye_color : chr "blue"
..$ birth_year: chr "19BBY"
..$ gender : chr "male"
$ :List of 8
..$ name : chr "C-3PO"
..$ height : chr "167"
..$ mass : chr "75"
..$ hair_color: chr "n/a"
..$ skin_color: chr "gold"
..$ eye_color : chr "yellow"
..$ birth_year: chr "112BBY"
..$ gender : chr "n/a"
$ :List of 8
..$ name : chr "R2-D2"
..$ height : chr "96"
..$ mass : chr "32"
..$ hair_color: chr "n/a"
..$ skin_color: chr "white, blue"
..$ eye_color : chr "red"
..$ birth_year: chr "33BBY"
..$ gender : chr "n/a"
List of 3
$ :List of 8
..$ name : chr "Darth Vader"
..$ height : chr "202"
..$ mass : chr "136"
..$ hair_color: chr "none"
..$ skin_color: chr "white"
..$ eye_color : chr "yellow"
..$ birth_year: chr "41.9BBY"
..$ gender : chr "male"
$ :List of 8
..$ name : chr "Leia Organa"
..$ height : chr "150"
..$ mass : chr "49"
..$ hair_color: chr "brown"
..$ skin_color: chr "light"
..$ eye_color : chr "brown"
..$ birth_year: chr "19BBY"
..$ gender : chr "female"
$ :List of 8
..$ name : chr "Owen Lars"
..$ height : chr "178"
..$ mass : chr "120"
..$ hair_color: chr "brown, grey"
..$ skin_color: chr "light"
..$ eye_color : chr "blue"
..$ birth_year: chr "52BBY"
..$ gender : chr "male"
The tidyverse includes the tibble package that extends data frames to be a bit more modern. The core features of tibbles is to have a nicer printing method as well as being “surly” and “lazy”.
Sepal.Length Sepal.Width Petal.Length
1 5.1 3.5 1.4
2 4.9 3.0 1.4
3 4.7 3.2 1.3
4 4.6 3.1 1.5
5 5.0 3.6 1.4
6 5.4 3.9 1.7
7 4.6 3.4 1.4
8 5.0 3.4 1.5
9 4.4 2.9 1.4
10 4.9 3.1 1.5
11 5.4 3.7 1.5
12 4.8 3.4 1.6
13 4.8 3.0 1.4
14 4.3 3.0 1.1
15 5.8 4.0 1.2
16 5.7 4.4 1.5
17 5.4 3.9 1.3
18 5.1 3.5 1.4
19 5.7 3.8 1.7
20 5.1 3.8 1.5
21 5.4 3.4 1.7
22 5.1 3.7 1.5
23 4.6 3.6 1.0
24 5.1 3.3 1.7
25 4.8 3.4 1.9
26 5.0 3.0 1.6
27 5.0 3.4 1.6
28 5.2 3.5 1.5
29 5.2 3.4 1.4
30 4.7 3.2 1.6
31 4.8 3.1 1.6
32 5.4 3.4 1.5
33 5.2 4.1 1.5
34 5.5 4.2 1.4
35 4.9 3.1 1.5
36 5.0 3.2 1.2
37 5.5 3.5 1.3
38 4.9 3.6 1.4
39 4.4 3.0 1.3
40 5.1 3.4 1.5
41 5.0 3.5 1.3
42 4.5 2.3 1.3
43 4.4 3.2 1.3
44 5.0 3.5 1.6
45 5.1 3.8 1.9
46 4.8 3.0 1.4
47 5.1 3.8 1.6
48 4.6 3.2 1.4
49 5.3 3.7 1.5
50 5.0 3.3 1.4
51 7.0 3.2 4.7
52 6.4 3.2 4.5
53 6.9 3.1 4.9
54 5.5 2.3 4.0
55 6.5 2.8 4.6
56 5.7 2.8 4.5
57 6.3 3.3 4.7
58 4.9 2.4 3.3
59 6.6 2.9 4.6
60 5.2 2.7 3.9
61 5.0 2.0 3.5
62 5.9 3.0 4.2
63 6.0 2.2 4.0
64 6.1 2.9 4.7
65 5.6 2.9 3.6
66 6.7 3.1 4.4
67 5.6 3.0 4.5
68 5.8 2.7 4.1
69 6.2 2.2 4.5
70 5.6 2.5 3.9
71 5.9 3.2 4.8
72 6.1 2.8 4.0
73 6.3 2.5 4.9
74 6.1 2.8 4.7
75 6.4 2.9 4.3
76 6.6 3.0 4.4
77 6.8 2.8 4.8
78 6.7 3.0 5.0
79 6.0 2.9 4.5
80 5.7 2.6 3.5
81 5.5 2.4 3.8
82 5.5 2.4 3.7
83 5.8 2.7 3.9
84 6.0 2.7 5.1
85 5.4 3.0 4.5
86 6.0 3.4 4.5
87 6.7 3.1 4.7
88 6.3 2.3 4.4
89 5.6 3.0 4.1
90 5.5 2.5 4.0
91 5.5 2.6 4.4
92 6.1 3.0 4.6
93 5.8 2.6 4.0
94 5.0 2.3 3.3
95 5.6 2.7 4.2
96 5.7 3.0 4.2
97 5.7 2.9 4.2
98 6.2 2.9 4.3
99 5.1 2.5 3.0
100 5.7 2.8 4.1
101 6.3 3.3 6.0
102 5.8 2.7 5.1
103 7.1 3.0 5.9
104 6.3 2.9 5.6
105 6.5 3.0 5.8
106 7.6 3.0 6.6
107 4.9 2.5 4.5
108 7.3 2.9 6.3
109 6.7 2.5 5.8
110 7.2 3.6 6.1
111 6.5 3.2 5.1
112 6.4 2.7 5.3
113 6.8 3.0 5.5
114 5.7 2.5 5.0
115 5.8 2.8 5.1
116 6.4 3.2 5.3
117 6.5 3.0 5.5
118 7.7 3.8 6.7
119 7.7 2.6 6.9
120 6.0 2.2 5.0
121 6.9 3.2 5.7
122 5.6 2.8 4.9
123 7.7 2.8 6.7
124 6.3 2.7 4.9
125 6.7 3.3 5.7
126 7.2 3.2 6.0
127 6.2 2.8 4.8
128 6.1 3.0 4.9
129 6.4 2.8 5.6
130 7.2 3.0 5.8
131 7.4 2.8 6.1
132 7.9 3.8 6.4
133 6.4 2.8 5.6
134 6.3 2.8 5.1
135 6.1 2.6 5.6
136 7.7 3.0 6.1
137 6.3 3.4 5.6
138 6.4 3.1 5.5
139 6.0 3.0 4.8
140 6.9 3.1 5.4
141 6.7 3.1 5.6
142 6.9 3.1 5.1
143 5.8 2.7 5.1
144 6.8 3.2 5.9
145 6.7 3.3 5.7
146 6.7 3.0 5.2
147 6.3 2.5 5.0
148 6.5 3.0 5.2
149 6.2 3.4 5.4
150 5.9 3.0 5.1
Petal.Width Species
1 0.2 setosa
2 0.2 setosa
3 0.2 setosa
4 0.2 setosa
5 0.2 setosa
6 0.4 setosa
7 0.3 setosa
8 0.2 setosa
9 0.2 setosa
10 0.1 setosa
11 0.2 setosa
12 0.2 setosa
13 0.1 setosa
14 0.1 setosa
15 0.2 setosa
16 0.4 setosa
17 0.4 setosa
18 0.3 setosa
19 0.3 setosa
20 0.3 setosa
21 0.2 setosa
22 0.4 setosa
23 0.2 setosa
24 0.5 setosa
25 0.2 setosa
26 0.2 setosa
27 0.4 setosa
28 0.2 setosa
29 0.2 setosa
30 0.2 setosa
31 0.2 setosa
32 0.4 setosa
33 0.1 setosa
34 0.2 setosa
35 0.2 setosa
36 0.2 setosa
37 0.2 setosa
38 0.1 setosa
39 0.2 setosa
40 0.2 setosa
41 0.3 setosa
42 0.3 setosa
43 0.2 setosa
44 0.6 setosa
45 0.4 setosa
46 0.3 setosa
47 0.2 setosa
48 0.2 setosa
49 0.2 setosa
50 0.2 setosa
51 1.4 versicolor
52 1.5 versicolor
53 1.5 versicolor
54 1.3 versicolor
55 1.5 versicolor
56 1.3 versicolor
57 1.6 versicolor
58 1.0 versicolor
59 1.3 versicolor
60 1.4 versicolor
61 1.0 versicolor
62 1.5 versicolor
63 1.0 versicolor
64 1.4 versicolor
65 1.3 versicolor
66 1.4 versicolor
67 1.5 versicolor
68 1.0 versicolor
69 1.5 versicolor
70 1.1 versicolor
71 1.8 versicolor
72 1.3 versicolor
73 1.5 versicolor
74 1.2 versicolor
75 1.3 versicolor
76 1.4 versicolor
77 1.4 versicolor
78 1.7 versicolor
79 1.5 versicolor
80 1.0 versicolor
81 1.1 versicolor
82 1.0 versicolor
83 1.2 versicolor
84 1.6 versicolor
85 1.5 versicolor
86 1.6 versicolor
87 1.5 versicolor
88 1.3 versicolor
89 1.3 versicolor
90 1.3 versicolor
91 1.2 versicolor
92 1.4 versicolor
93 1.2 versicolor
94 1.0 versicolor
95 1.3 versicolor
96 1.2 versicolor
97 1.3 versicolor
98 1.3 versicolor
99 1.1 versicolor
100 1.3 versicolor
101 2.5 virginica
102 1.9 virginica
103 2.1 virginica
104 1.8 virginica
105 2.2 virginica
106 2.1 virginica
107 1.7 virginica
108 1.8 virginica
109 1.8 virginica
110 2.5 virginica
111 2.0 virginica
112 1.9 virginica
113 2.1 virginica
114 2.0 virginica
115 2.4 virginica
116 2.3 virginica
117 1.8 virginica
118 2.2 virginica
119 2.3 virginica
120 1.5 virginica
121 2.3 virginica
122 2.0 virginica
123 2.0 virginica
124 1.8 virginica
125 2.1 virginica
126 1.8 virginica
127 1.8 virginica
128 1.8 virginica
129 2.1 virginica
130 1.6 virginica
131 1.9 virginica
132 2.0 virginica
133 2.2 virginica
134 1.5 virginica
135 1.4 virginica
136 2.3 virginica
137 2.4 virginica
138 1.8 virginica
139 1.8 virginica
140 2.1 virginica
141 2.4 virginica
142 2.3 virginica
143 1.9 virginica
144 2.3 virginica
145 2.5 virginica
146 2.3 virginica
147 1.9 virginica
148 2.0 virginica
149 2.3 virginica
150 1.8 virginica
# A tibble: 150 × 5
Sepal.Length Sepal.Width Petal.Length
<dbl> <dbl> <dbl>
1 5.1 3.5 1.4
2 4.9 3 1.4
3 4.7 3.2 1.3
4 4.6 3.1 1.5
5 5 3.6 1.4
6 5.4 3.9 1.7
7 4.6 3.4 1.4
8 5 3.4 1.5
9 4.4 2.9 1.4
10 4.9 3.1 1.5
# ℹ 140 more rows
# ℹ 2 more variables: Petal.Width <dbl>,
# Species <fct>
By default, subsetting tibbles always results in another tibble ($
or [[
can still be used to subset for a specific column). I.e. tibble subsets are always preserving and therefore type consistent.
Tibbles do not use partial matching when the $
operator is used.
Tibbles also have always had stringsAsFactors = FALSE
as default behavior.
Only vectors with length 1 will undergo length coercion - everything else will throw an error.
[1] [ [[ [[<- [<- $
[6] $<- as.data.frame coerce initialize names<-
[11] Ops row.names<- show slotsFromS3 str
[16] tbl_sum
see '?methods' for accessing help and source code
[1] [[<- [<- $<- coerce format
[6] glimpse initialize Ops print show
[11] slotsFromS3 tbl_sum
see '?methods' for accessing help and source code
Why did this work?
magrittr
In software engineering, a pipeline consists of a chain of processing elements (processes, threads, coroutines, functions, etc.), arranged so that the output of each element is the input of the next; - Wikipedia - Pipeline (software)
Consider the following sequence of actions that describe the process of getting to campus in the morning:
I need to find my key, then unlock my car, then start my car, then drive to school, then park.
Expressed as a set of nested functions in R pseudocode this would look like:
All of the following are fine, it comes down to personal preference:
Nested:
Piped:
Intermediate:
Sometimes we want to send our results to an function argument other than first one or we want to use the previous result for multiple arguments. In these cases we can refer to the previous result using .
.
As of R v4.1.0 a pipe operator has been added to the base language in R, it is implemented as |>
.
The current version of RStudio on the departmental servers is v4.3.1 so you are welcome to try it out.
Depending an R version >= 4.1 is a harder dependency than depending on the magrittr package
|>
will likely have less overhead than %>%
but the difference is unlikely to matter in practice
|>
supports an equivalent to .
using _
as of R v4.2
Generally we will prefer the base pipe in this class, but using either is fine.
dplyr is based on the concepts of functions as verbs that manipulate data frames.
Core single data frame functions / verbs:
filter()
/ slice()
: pick rows based on criteriaselect()
/ rename()
: select columns by namepull()
: grab a column as a vectorarrange()
: reorder rowsmutate()
/ transmute()
: create or modify columnsdistinct()
: filter for unique rowssummarise()
/ count()
: reduce variables to valuesgroup_by()
/ ungroup()
: modify other verbs to act on subsetsrelocate()
: change column orderFirst argument is always a data frame
Subsequent arguments say what to do with that data frame
Always return a data frame
Don’t modify in place
Magic via lazy evaluation and s3
We will demonstrate dplyr’s functionality using the nycflights13 data.
# A tibble: 336,776 × 19
year month day dep_time sched_dep_time dep_delay arr_time
<int> <int> <int> <int> <int> <dbl> <int>
1 2013 1 1 517 515 2 830
2 2013 1 1 533 529 4 850
3 2013 1 1 542 540 2 923
4 2013 1 1 544 545 -1 1004
5 2013 1 1 554 600 -6 812
6 2013 1 1 554 558 -4 740
7 2013 1 1 555 600 -5 913
8 2013 1 1 557 600 -3 709
9 2013 1 1 557 600 -3 838
10 2013 1 1 558 600 -2 753
# ℹ 336,766 more rows
# ℹ 12 more variables: sched_arr_time <int>, arr_delay <dbl>,
# carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
# air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,
# time_hour <dttm>
# A tibble: 28,834 × 19
year month day dep_time sched_dep_time dep_delay arr_time
<int> <int> <int> <int> <int> <dbl> <int>
1 2013 3 1 4 2159 125 318
2 2013 3 1 50 2358 52 526
3 2013 3 1 117 2245 152 223
4 2013 3 1 454 500 -6 633
5 2013 3 1 505 515 -10 746
6 2013 3 1 521 530 -9 813
7 2013 3 1 537 540 -3 856
8 2013 3 1 541 545 -4 1014
9 2013 3 1 549 600 -11 639
10 2013 3 1 550 600 -10 747
# ℹ 28,824 more rows
# ℹ 12 more variables: sched_arr_time <int>, arr_delay <dbl>,
# carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
# air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,
# time_hour <dttm>
# A tibble: 6,530 × 19
year month day dep_time sched_dep_time dep_delay arr_time
<int> <int> <int> <int> <int> <dbl> <int>
1 2013 3 1 4 2159 125 318
2 2013 3 1 50 2358 52 526
3 2013 3 1 117 2245 152 223
4 2013 3 1 454 500 -6 633
5 2013 3 1 505 515 -10 746
6 2013 3 1 521 530 -9 813
7 2013 3 1 537 540 -3 856
8 2013 3 1 541 545 -4 1014
9 2013 3 1 549 600 -11 639
10 2013 3 1 550 600 -10 747
# ℹ 6,520 more rows
# ℹ 12 more variables: sched_arr_time <int>, arr_delay <dbl>,
# carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
# air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,
# time_hour <dttm>
# A tibble: 1,178 × 19
year month day dep_time sched_dep_time dep_delay arr_time
<int> <int> <int> <int> <int> <dbl> <int>
1 2013 3 1 607 610 -3 832
2 2013 3 1 629 632 -3 844
3 2013 3 1 657 700 -3 953
4 2013 3 1 714 715 -1 939
5 2013 3 1 716 710 6 958
6 2013 3 1 727 730 -3 1007
7 2013 3 1 836 840 -4 1111
8 2013 3 1 857 900 -3 1202
9 2013 3 1 903 900 3 1157
10 2013 3 1 904 831 33 1150
# ℹ 1,168 more rows
# ℹ 12 more variables: sched_arr_time <int>, arr_delay <dbl>,
# carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
# air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,
# time_hour <dttm>
# A tibble: 10 × 19
year month day dep_time sched_dep_time dep_delay arr_time
<int> <int> <int> <int> <int> <dbl> <int>
1 2013 1 1 517 515 2 830
2 2013 1 1 533 529 4 850
3 2013 1 1 542 540 2 923
4 2013 1 1 544 545 -1 1004
5 2013 1 1 554 600 -6 812
6 2013 1 1 554 558 -4 740
7 2013 1 1 555 600 -5 913
8 2013 1 1 557 600 -3 709
9 2013 1 1 557 600 -3 838
10 2013 1 1 558 600 -2 753
# ℹ 12 more variables: sched_arr_time <int>, arr_delay <dbl>,
# carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
# air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,
# time_hour <dttm>
# A tibble: 5 × 19
year month day dep_time sched_dep_time dep_delay arr_time
<int> <int> <int> <int> <int> <dbl> <int>
1 2013 9 30 NA 1455 NA NA
2 2013 9 30 NA 2200 NA NA
3 2013 9 30 NA 1210 NA NA
4 2013 9 30 NA 1159 NA NA
5 2013 9 30 NA 840 NA NA
# ℹ 12 more variables: sched_arr_time <int>, arr_delay <dbl>,
# carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
# air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,
# time_hour <dttm>
# A tibble: 5 × 19
year month day dep_time sched_dep_time dep_delay arr_time
<int> <int> <int> <int> <int> <dbl> <int>
1 2013 9 30 NA 1455 NA NA
2 2013 9 30 NA 2200 NA NA
3 2013 9 30 NA 1210 NA NA
4 2013 9 30 NA 1159 NA NA
5 2013 9 30 NA 840 NA NA
# ℹ 12 more variables: sched_arr_time <int>, arr_delay <dbl>,
# carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
# air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,
# time_hour <dttm>
# A tibble: 336,776 × 16
dep_time sched_dep_time dep_delay arr_time sched_arr_time arr_delay
<int> <int> <dbl> <int> <int> <dbl>
1 517 515 2 830 819 11
2 533 529 4 850 830 20
3 542 540 2 923 850 33
4 544 545 -1 1004 1022 -18
5 554 600 -6 812 837 -25
6 554 558 -4 740 728 12
7 555 600 -5 913 854 19
8 557 600 -3 709 723 -14
9 557 600 -3 838 846 -8
10 558 600 -2 753 745 8
# ℹ 336,766 more rows
# ℹ 10 more variables: carrier <chr>, flight <int>, tailnum <chr>,
# origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
# minute <dbl>, time_hour <dttm>
# A tibble: 336,776 × 16
dep_time sched_dep_time dep_delay arr_time sched_arr_time arr_delay
<int> <int> <dbl> <int> <int> <dbl>
1 517 515 2 830 819 11
2 533 529 4 850 830 20
3 542 540 2 923 850 33
4 544 545 -1 1004 1022 -18
5 554 600 -6 812 837 -25
6 554 558 -4 740 728 12
7 555 600 -5 913 854 19
8 557 600 -3 709 723 -14
9 557 600 -3 838 846 -8
10 558 600 -2 753 745 8
# ℹ 336,766 more rows
# ℹ 10 more variables: carrier <chr>, flight <int>, tailnum <chr>,
# origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
# minute <dbl>, time_hour <dttm>
# A tibble: 336,776 × 7
dep_time sched_dep_time dep_delay arr_time sched_arr_time arr_delay
<int> <int> <dbl> <int> <int> <dbl>
1 517 515 2 830 819 11
2 533 529 4 850 830 20
3 542 540 2 923 850 33
4 544 545 -1 1004 1022 -18
5 554 600 -6 812 837 -25
6 554 558 -4 740 728 12
7 555 600 -5 913 854 19
8 557 600 -3 709 723 -14
9 557 600 -3 838 846 -8
10 558 600 -2 753 745 8
# ℹ 336,766 more rows
# ℹ 1 more variable: carrier <chr>
# A tibble: 336,776 × 4
dep_time dep_delay arr_time arr_delay
<int> <dbl> <int> <dbl>
1 517 2 830 11
2 533 4 850 20
3 542 2 923 33
4 544 -1 1004 -18
5 554 -6 812 -25
6 554 -4 740 12
7 555 -5 913 19
8 557 -3 709 -14
9 557 -3 838 -8
10 558 -2 753 8
# ℹ 336,766 more rows
# A tibble: 336,776 × 14
year month day dep_time sched_dep_time dep_delay arr_time
<int> <int> <int> <int> <int> <dbl> <int>
1 2013 1 1 517 515 2 830
2 2013 1 1 533 529 4 850
3 2013 1 1 542 540 2 923
4 2013 1 1 544 545 -1 1004
5 2013 1 1 554 600 -6 812
6 2013 1 1 554 558 -4 740
7 2013 1 1 555 600 -5 913
8 2013 1 1 557 600 -3 709
9 2013 1 1 557 600 -3 838
10 2013 1 1 558 600 -2 753
# ℹ 336,766 more rows
# ℹ 7 more variables: sched_arr_time <int>, arr_delay <dbl>, flight <int>,
# air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>
# A tibble: 336,776 × 5
carrier tailnum origin dest time_hour
<chr> <chr> <chr> <chr> <dttm>
1 UA N14228 EWR IAH 2013-01-01 05:00:00
2 UA N24211 LGA IAH 2013-01-01 05:00:00
3 AA N619AA JFK MIA 2013-01-01 05:00:00
4 B6 N804JB JFK BQN 2013-01-01 05:00:00
5 DL N668DN LGA ATL 2013-01-01 06:00:00
6 UA N39463 EWR ORD 2013-01-01 05:00:00
7 B6 N516JB EWR FLL 2013-01-01 06:00:00
8 EV N829AS LGA IAD 2013-01-01 06:00:00
9 B6 N593JB JFK MCO 2013-01-01 06:00:00
10 AA N3ALAA LGA ORD 2013-01-01 06:00:00
# ℹ 336,766 more rows
# A tibble: 336,776 × 19
carrier origin dest year month day dep_time sched_dep_time dep_delay
<chr> <chr> <chr> <int> <int> <int> <int> <int> <dbl>
1 UA EWR IAH 2013 1 1 517 515 2
2 UA LGA IAH 2013 1 1 533 529 4
3 AA JFK MIA 2013 1 1 542 540 2
4 B6 JFK BQN 2013 1 1 544 545 -1
5 DL LGA ATL 2013 1 1 554 600 -6
6 UA EWR ORD 2013 1 1 554 558 -4
7 B6 EWR FLL 2013 1 1 555 600 -5
8 EV LGA IAD 2013 1 1 557 600 -3
9 B6 JFK MCO 2013 1 1 557 600 -3
10 AA LGA ORD 2013 1 1 558 600 -2
# ℹ 336,766 more rows
# ℹ 10 more variables: arr_time <int>, sched_arr_time <int>,
# arr_delay <dbl>, flight <int>, tailnum <chr>, air_time <dbl>,
# distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
# A tibble: 336,776 × 19
dep_time sched_dep_time dep_delay arr_time sched_arr_time arr_delay
<int> <int> <dbl> <int> <int> <dbl>
1 517 515 2 830 819 11
2 533 529 4 850 830 20
3 542 540 2 923 850 33
4 544 545 -1 1004 1022 -18
5 554 600 -6 812 837 -25
6 554 558 -4 740 728 12
7 555 600 -5 913 854 19
8 557 600 -3 709 723 -14
9 557 600 -3 838 846 -8
10 558 600 -2 753 745 8
# ℹ 336,766 more rows
# ℹ 13 more variables: carrier <chr>, flight <int>, tailnum <chr>,
# origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
# minute <dbl>, time_hour <dttm>, year <int>, month <int>, day <int>
# A tibble: 336,776 × 19
year month day dep_time sched_dep_time dep_delay arr_time
<int> <int> <int> <int> <int> <dbl> <int>
1 2013 1 1 517 515 2 830
2 2013 1 1 533 529 4 850
3 2013 1 1 542 540 2 923
4 2013 1 1 544 545 -1 1004
5 2013 1 1 554 600 -6 812
6 2013 1 1 554 558 -4 740
7 2013 1 1 555 600 -5 913
8 2013 1 1 557 600 -3 709
9 2013 1 1 557 600 -3 838
10 2013 1 1 558 600 -2 753
# ℹ 336,766 more rows
# ℹ 12 more variables: sched_arr_time <int>, arr_delay <dbl>,
# carrier <chr>, flight <int>, tail_number <chr>, origin <chr>,
# dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,
# time_hour <dttm>
# A tibble: 336,776 × 19
year month day dep_time sched_dep_time
<int> <int> <int> <int> <int>
1 2013 1 1 517 515
2 2013 1 1 533 529
3 2013 1 1 542 540
4 2013 1 1 544 545
5 2013 1 1 554 600
6 2013 1 1 554 558
7 2013 1 1 555 600
8 2013 1 1 557 600
9 2013 1 1 557 600
10 2013 1 1 558 600
# ℹ 336,766 more rows
# ℹ 14 more variables: dep_delay <dbl>,
# arr_time <int>, sched_arr_time <int>,
# arr_delay <dbl>, carrier <chr>, flight <int>,
# tail_number <chr>, origin <chr>, dest <chr>,
# air_time <dbl>, distance <dbl>, hour <dbl>,
# minute <dbl>, time_hour <dttm>
[1] "year" "month" "day" "dep_time"
[5] "sched_dep_time" "dep_delay" "arr_time" "sched_arr_time"
[9] "arr_delay" "carrier" "flight" "tailnum"
[13] "origin" "dest" "air_time" "distance"
[17] "hour" "minute" "time_hour"
# A tibble: 765 × 19
year month day dep_time sched_dep_time dep_delay arr_time
<int> <int> <int> <int> <int> <dbl> <int>
1 2013 3 2 1336 1329 7 1426
2 2013 3 2 628 629 -1 837
3 2013 3 2 637 640 -3 903
4 2013 3 2 743 745 -2 945
5 2013 3 2 857 900 -3 1117
6 2013 3 2 1027 1030 -3 1234
7 2013 3 2 1134 1145 -11 1332
8 2013 3 2 1412 1415 -3 1636
9 2013 3 2 1633 1636 -3 1848
10 2013 3 2 1655 1700 -5 1857
# ℹ 755 more rows
# ℹ 12 more variables: sched_arr_time <int>, arr_delay <dbl>,
# carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
# air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,
# time_hour <dttm>
# A tibble: 765 × 3
origin dest tailnum
<chr> <chr> <chr>
1 LGA ATL N928AT
2 LGA ATL N623DL
3 LGA ATL N680DA
4 LGA ATL N996AT
5 LGA ATL N510MQ
6 LGA ATL N663DN
7 LGA ATL N942DL
8 LGA ATL N511MQ
9 LGA ATL N910DE
10 LGA ATL N902DE
# ℹ 755 more rows
# A tibble: 336,776 × 4
year month day date
<int> <int> <int> <chr>
1 2013 1 1 2013/1/1
2 2013 1 1 2013/1/1
3 2013 1 1 2013/1/1
4 2013 1 1 2013/1/1
5 2013 1 1 2013/1/1
6 2013 1 1 2013/1/1
7 2013 1 1 2013/1/1
8 2013 1 1 2013/1/1
9 2013 1 1 2013/1/1
10 2013 1 1 2013/1/1
# ℹ 336,766 more rows
# A tibble: 1 × 3
`n()` `min(dep_delay)` `max(dep_delay)`
<int> <dbl> <dbl>
1 336776 NA NA
# A tibble: 336,776 × 19
# Groups: origin [3]
year month day dep_time sched_dep_time dep_delay arr_time
<int> <int> <int> <int> <int> <dbl> <int>
1 2013 1 1 517 515 2 830
2 2013 1 1 533 529 4 850
3 2013 1 1 542 540 2 923
4 2013 1 1 544 545 -1 1004
5 2013 1 1 554 600 -6 812
6 2013 1 1 554 558 -4 740
7 2013 1 1 555 600 -5 913
8 2013 1 1 557 600 -3 709
9 2013 1 1 557 600 -3 838
10 2013 1 1 558 600 -2 753
# ℹ 336,766 more rows
# ℹ 12 more variables: sched_arr_time <int>, arr_delay <dbl>,
# carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
# air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,
# time_hour <dttm>
flights |>
group_by(origin) |>
summarize(
n = n(),
min_dep_delay = min(dep_delay, na.rm=TRUE),
max_dep_delay = max(dep_delay, na.rm=TRUE),
.groups = "drop_last"
)
# A tibble: 3 × 4
origin n min_dep_delay max_dep_delay
<chr> <int> <dbl> <dbl>
1 EWR 120835 -25 1126
2 JFK 111279 -43 1301
3 LGA 104662 -33 911
flights |>
group_by(origin) |>
summarize(
n = n(),
min_dep_delay = min(dep_delay, na.rm=TRUE),
max_dep_delay = max(dep_delay, na.rm=TRUE),
.groups = "keep"
)
# A tibble: 3 × 4
# Groups: origin [3]
origin n min_dep_delay max_dep_delay
<chr> <int> <dbl> <dbl>
1 EWR 120835 -25 1126
2 JFK 111279 -43 1301
3 LGA 104662 -33 911
How many flights to Los Angeles (LAX) did each of the legacy carriers (AA, UA, DL or US) have in May from JFK, and what was their average duration?
What was the shortest flight out of each airport in terms of distance? In terms of duration?
Which plane (check the tail number) flew out of each New York airport the most?
Which date should you fly on if you want to have the lowest possible average departure delay? What about arrival delay?
Sta 523 - Fall 2023