
Lists, Attributes, & S3
Lecture 04

Dr. Colin Rundel

1Sta 523 - Fall 2023

Generic Vectors

3Sta 523 - Fall 2023

Lists
Lists are the other vector data structure in R, they differ from atomic vectors in
that they can contain a heterogeneous collection of R object (e.g. atomic
vectors, functions, other lists, etc.).

list("A", c(TRUE,FALSE), (1:4)/2, list(TRUE, 1), function(x) x^2)1

[[1]]

[1] "A"

[[2]]

[1] TRUE FALSE

[[3]]

[1] 0.5 1.0 1.5 2.0

[[4]]

[[4]][[1]]

[1] TRUE

4Sta 523 - Fall 2023

List Structure
Often we want a more compact representation of a complex object, the str()
function is useful for this, particularly for lists.

str(c(1,2))1

 num [1:2] 1 2

str(1:100)1

 int [1:100] 1 2 3 4 5 6 7 8 9 10 ...

str("A")1

 chr "A"

str(list(1

 "A", c(TRUE,FALSE), 2

 (1:4)/2, list(TRUE, 1), 3

 sum4

))5

List of 5

 $: chr "A"

 $: logi [1:2] TRUE FALSE

 $: num [1:4] 0.5 1 1.5 2

 $:List of 2

 ..$: logi TRUE

 ..$: num 1

 $:function (..., na.rm = FALSE)

5Sta 523 - Fall 2023

Recursive lists
Lists can contain other lists, meaning they don’t have to be flat

str(list(1, list(2, list(3, 4), 5)))1

List of 2

 $: num 1

 $:List of 3

 ..$: num 2

 ..$:List of 2

 $: num 3

 $: num 4

 ..$: num 5

Because of this, lists become a natural way of representing tree-like structures within R
6Sta 523 - Fall 2023

List Coercion
By default a vector will be coerced to a list (as a list is more general) if needed

str(c(1, list(4, list(6, 7))))1

List of 3

 $: num 1

 $: num 4

 $:List of 2

 ..$: num 6

 ..$: num 7

str(list(1, list(4, list(6, 7))))1

List of 2

 $: num 1

 $:List of 2

 ..$: num 4

 ..$:List of 2

 $: num 6

 $: num 7

We can coerce a list into an atomic vector using unlist() - the usual type
coercion rules then apply to determine the resulting type.

unlist(list(1:3, list(4:5, 6)))1

[1] 1 2 3 4 5 6

unlist(list(1, list(2, list(3, "Hello"))))1

[1] "1" "2" "3" "Hello"

7Sta 523 - Fall 2023

Named lists
Because of their more complex structure we often want to name the elements
of a list (we can also do this with atomic vectors).

This can make accessing list elements more straight forward (and avoids the
use of magic numbers)

str(list(A = 1, B = list(C = 2, D = 3)))1

List of 2

 $ A: num 1

 $ B:List of 2

 ..$ C: num 2

 ..$ D: num 3

More complex names (i.e. non-valid object names) are allowed but must be
quoted,

list("knock knock" = "who's there?")1

$`knock knock`

[1] "who's there?"
8Sta 523 - Fall 2023

Exercise 1
Represent the following JSON data as a list in R.

{1

 "firstName": "John",2

 "lastName": "Smith",3

 "age": 25,4

 "address": 5

 {6

 "streetAddress": "21 2nd Street",7

 "city": "New York",8

 "state": "NY",9

 "postalCode": 1002110

 },11

 "phoneNumber": 12

 [{13

 "type": "home",14

 "number": "212 555-1239"15

 },16

 {17

 "type": "fax",18

 "number": "646 555-4567"19

 }]20

}21

05:00 9Sta 523 - Fall 2023

NULL Values

11Sta 523 - Fall 2023

NULLs
NULL is a special value within R that represents nothing - it always has length
zero and a type and mode of "NULL" and cannot have any attributes.

NULL1

NULL

typeof(NULL)1

[1] "NULL"

mode(NULL)1

[1] "NULL"

length(NULL)1

[1] 0

c()1

NULL

c(NULL)1

NULL

c(1, NULL, 2)1

[1] 1 2

c(NULL, TRUE, "A")1

[1] "TRUE" "A"

Note - If you’re familiar with SQL, its NULL is more like R’s NA
12Sta 523 - Fall 2023

0-length coercion
0-length length coercion is a special case of length coercion when one of the
arguments has length 0. In this special case the longer vector will have its
length coerced to 0.

integer() + 11

numeric(0)

log(numeric())1

numeric(0)

logical() | TRUE1

logical(0)

character() > "M"1

logical(0)

As a NULL values always have length 0, this rule will apply (note the types)

NULL + 11

numeric(0)

NULL | TRUE1

logical(0)

NULL > "M"1

logical(0)

log(NULL)1

Error in log(NULL): non-numeric argument to

mathematical function

13Sta 523 - Fall 2023

NULLs and comparison
Given the previous issue, comparisons and conditionals with NULLs can be
problematic.

x = NULL1

if (x > 0)1

 print("Hello")2

Error in if (x > 0) print("Hello"): argument is of length zero

if (!is.null(x) & (x > 0))1

 print("Hello")2

Error in if (!is.null(x) & (x > 0)) print("Hello"): argument is of length zero

if (!is.null(x) && (x > 0))1

 print("Hello")2

The last example works due to short circuit evaluation which occurs with && and || but not & or |.
14Sta 523 - Fall 2023

Attributes

16Sta 523 - Fall 2023

Attributes
Attributes are metadata that can be attached to objects in R. Some are special
(e.g. class, comment, dim, dimnames, names, …) as they change the behavior of the
object(s).

Attributes are implemented as a named list that is attached to an object. They
can be interacted with via the attr and attributes functions.

(x = c(L=1,M=2,N=3))1

L M N

1 2 3

str(attributes(x))1

List of 1

 $ names: chr [1:3] "L" "M" "N"

attr(x, "names")1

[1] "L" "M" "N"

attr(x, "something")1

NULL

17Sta 523 - Fall 2023

Assigning attributes
The most commonly used / important attributes will usually have helper
functions for getting and setting the attribute,

x1

L M N

1 2 3

names(x) = c("Z","Y","X")1

x2

Z Y X

1 2 3

names(x)1

[1] "Z" "Y" "X"

attr(x, "names") = c("A","B","C")1

x2

A B C

1 2 3

names(x)1

[1] "A" "B" "C" 18Sta 523 - Fall 2023

Helpers functions vs attr
names(x) = 1:31

x2

1 2 3

1 2 3

attributes(x)1

$names

[1] "1" "2" "3"

names(x) = c(TRUE, FALSE, TRUE)1

x2

 TRUE FALSE TRUE

 1 2 3

attributes(x)1

$names

[1] "TRUE" "FALSE" "TRUE"

attr(x, "names") = 1:31

x2

1 2 3

1 2 3

attributes(x)1

$names

[1] "1" "2" "3"

19Sta 523 - Fall 2023

Factors
Factor objects are how R represents categorical data (e.g. a variable where
there is a discrete set of possible outcomes).

(x = factor(c("Sunny", "Cloudy", "Rainy", "Cloudy", "Cloudy")))1

[1] Sunny Cloudy Rainy Cloudy Cloudy

Levels: Cloudy Rainy Sunny

str(x)1

 Factor w/ 3 levels "Cloudy","Rainy",..: 3 1 2 1 1

typeof(x)1

[1] "integer"

mode(x)1

[1] "numeric"

class(x)1

[1] "factor"

20Sta 523 - Fall 2023

Composition
A factor is just an integer vector with two attributes: class and levels.

x1

[1] Sunny Cloudy Rainy Cloudy Cloudy

Levels: Cloudy Rainy Sunny

str(attributes(x))1

List of 2

 $ levels: chr [1:3] "Cloudy" "Rainy" "Sunny"

 $ class : chr "factor"

We can build our own factor from scratch using attr(),

y = c(3L, 1L, 2L, 1L, 1L)1

attr(y, "levels") = c("Cloudy", "Rainy", "Sunny")2

attr(y, "class") = "factor"3

y4

[1] Sunny Cloudy Rainy Cloudy Cloudy

Levels: Cloudy Rainy Sunny
21Sta 523 - Fall 2023

Building objects
The approach we just used is a bit clunky - generally the preferred method for
construction an object with attributes from scratch is to use the structure
function.

(y = structure(1

 c(3L, 1L, 2L, 1L, 1L),2

 levels = c("Cloudy", "Rainy", "Sunny"),3

 class = "factor"4

))5

[1] Sunny Cloudy Rainy Cloudy Cloudy

Levels: Cloudy Rainy Sunny

class(y)1

[1] "factor"

is.factor(y)1

[1] TRUE

22Sta 523 - Fall 2023

Factors are integer vectors?
Knowing factors are stored as integers help explain some of their more
interesting behaviors:

x+11

[1] NA NA NA NA NA

is.integer(x)1

[1] FALSE

as.integer(x)1

[1] 3 1 2 1 1

as.character(x)1

[1] "Sunny" "Cloudy" "Rainy" "Cloudy" "Cloudy"

as.logical(x)1

[1] NA NA NA NA NA

23Sta 523 - Fall 2023

S3 Object System

25Sta 523 - Fall 2023

class
The class attribute is an additional layer to R’s type hierarchy,

value typeof() mode() class()

TRUE logical logical logical

1 double numeric numeric

1L integer numeric integer

"A" character character character

NULL NULL NULL NULL

list(1, "A") list list list

factor("A") integer numeric factor

function(x) x^2 closure function function

+ builtin function function

[special function function

26Sta 523 - Fall 2023

S3 class specialization
x = c("A","B","A","C")1

print(x)1

[1] "A" "B" "A" "C"

print(factor(x))1

[1] A B A C

Levels: A B C

print(unclass(factor(x)))1

[1] 1 2 1 3

attr(,"levels")

[1] "A" "B" "C"

print.default(factor(x))1

[1] 1 2 1 3

27Sta 523 - Fall 2023

What’s up with print?
print1

function (x, ...)

UseMethod("print")

<bytecode: 0x1430cbd78>

<environment: namespace:base>

print.default1

function (x, digits = NULL, quote = TRUE, na.print = NULL, print.gap = NULL,

 right = FALSE, max = NULL, width = NULL, useSource = TRUE,

 ...)

{

 args <- pairlist(digits = digits, quote = quote, na.print = na.print,

 print.gap = print.gap, right = right, max = max, width = width,

 useSource = useSource, ...)

 missings <- c(missing(digits), missing(quote), missing(na.print),

 missing(print.gap), missing(right), missing(max), missing(width),

 missing(useSource))

 .Internal(print.default(x, args, missings))

}

<bytecode: 0x144d0c650>

<environment: namespace:base> 28Sta 523 - Fall 2023

Other examples
mean1

function (x, ...)

UseMethod("mean")

<bytecode: 0x142928090>

<environment: namespace:base>

t.test1

function (x, ...)

UseMethod("t.test")

<bytecode: 0x153054fa0>

<environment: namespace:stats>

summary1

function (object, ...)

UseMethod("summary")

<bytecode: 0x1538264e8>

<environment: namespace:base>

plot1

function (x, y, ...)

UseMethod("plot")

<bytecode: 0x152a740a0>

<environment: namespace:base>

Not all base functions use this approach,

sum1

function (..., na.rm = FALSE) .Primitive("sum")

29Sta 523 - Fall 2023

What is S3?

S3 is R’s first and simplest OO system. It is the only OO system used in the
base and stats packages, and it’s the most commonly used system in
CRAN packages. S3 is informal and ad hoc, but it has a certain elegance in
its minimalism: you can’t take away any part of it and still have a useful OO
system.
— Hadley Wickham, Advanced R

S3 should not be confused with R’s other object oriented systems: S4, Reference classes, R6, and soon .R7 30Sta 523 - Fall 2023

https://www.rstudio.com/conference/2022/talks/introduction-to-r7/

What’s going on?
S3 objects and their related functions work using a very simple dispatch
mechanism - a generic function is created whose sole job is to call the
UseMethod function which then calls a class specialized function using the
naming convention: <generic>.<class>

We can see all of the specialized versions of the generic using the methods
function.

methods("plot")1

 [1] plot.acf* plot.colors* plot.data.frame*

 [4] plot.decomposed.ts* plot.default plot.dendrogram*

 [7] plot.density* plot.ecdf plot.factor*

[10] plot.formula* plot.function plot.hclust*

[13] plot.histogram* plot.HoltWinters* plot.isoreg*

[16] plot.lm* plot.medpolish* plot.mlm*

[19] plot.ppr* plot.prcomp* plot.princomp*

[22] plot.profile.nls* plot.raster* plot.spec*

[25] plot.stepfun plot.stl* plot.table*

[28] plot.ts plot.tskernel* plot.TukeyHSD*

see '?methods' for accessing help and source code

31Sta 523 - Fall 2023

Other examples
methods("print")1

 [1] print.acf*

 [2] print.activeConcordance*

 [3] print.AES*

 [4] print.anova*

 [5] print.aov*

 [6] print.aovlist*

 [7] print.ar*

 [8] print.Arima*

 [9] print.arima0*

 [10] print.AsIs

 [11] print.aspell*

 [12] print.aspell_inspect_context*

 [13] print.bibentry*

 [14] print.Bibtex*

 [15] print.browseVignettes*

 [16] print.by

[17] print.changedFiles*

print.factor1

function (x, quote = FALSE, max.levels = NULL,

width = getOption("width"),

 ...)

{

 ord <- is.ordered(x)

 if (length(x) == 0L)

 cat(if (ord)

 "ordered"

 else "factor", "()\n", sep = "")

 else {

 xx <- character(length(x))

 xx[] <- as.character(x)

 keepAttrs <- setdiff(names(attributes(x)),

c("levels",

 "class"))

 attributes(xx)[keepAttrs] <- attributes(x)

[keepAttrs]

32Sta 523 - Fall 2023

The other way
If instead we have a class and want to know what specialized functions exist for
that class, then we can again use the methods function with the class argument.

methods(class="factor")1

 [1] [[[[[<- [<- all.equal

 [6] as.character as.data.frame as.Date as.list as.logical

[11] as.POSIXlt as.vector c coerce droplevels

[16] format initialize is.na<- length<- levels<-

[21] Math Ops plot print relevel

[26] relist rep show slotsFromS3 summary

[31] Summary xtfrm

see '?methods' for accessing help and source code

33Sta 523 - Fall 2023

Adding methods
x = structure(c(1,2,3), 1

 class="class_A")2

x3

[1] 1 2 3

attr(,"class")

[1] "class_A"

y = structure(c(6,5,4), 1

 class="class_B")2

y3

[1] 6 5 4

attr(,"class")

[1] "class_B"

print.class_A = function(x) {1

 cat("Class A!\n")2

 print.default(unclass(x))3

}4

x5

Class A!

[1] 1 2 3

print.class_B = function(x) {1

 cat("Class B!\n")2

 print.default(unclass(x))3

}4

y5

Class B!

[1] 6 5 4

class(x) = "class_B"1

x2

Class B!

[1] 1 2 3

class(y) = "class_A"1

y2

Class A!

[1] 6 5 4

34Sta 523 - Fall 2023

Defining a new S3 Generic
shuffle = function(x) {1

 UseMethod("shuffle")2

}3

shuffle.default = function(x) {1

 stop("Class ", class(x), " is not supported by shuffle.\n", call. = FALSE)2

}3

shuffle.factor = function(f) {1

 factor(sample(as.character(f)), levels = sample(levels(f)))2

}3

shuffle.integer = function(x) {1

 sample(x)2

}3

35Sta 523 - Fall 2023

Shuffle results
shuffle(1:10)1

 [1] 6 9 8 10 3 5 4 7 1 2

shuffle(factor(c("A","B","C","A")))1

[1] A A C B

Levels: C B A

shuffle(c(1, 2, 3, 4, 5))1

Error: Class numeric is not supported by shuffle.

shuffle(letters[1:5])1

Error: Class character is not supported by shuffle.

36Sta 523 - Fall 2023

Exercise 2 - classes, modes, and types
Below we have defined an S3 method called report, it is designed to return a
message about the type/mode/class of an object passed to it.

Try running the report function with different input types, what happens?

Now run rm("report.integer") in your Console and try using the report function
again, what has changed?

What does this tell us about S3, types, modes, and classes?

What if we also rm("report.double")?

report = function(x) {1

 UseMethod("report")2

}3

4

report.default = function(x) {5

 "This class does not have a method defined."6

}7

report.integer = function(x) {1

 "I'm an integer!"2

}3

4

report.double = function(x) {5

 "I'm a double!"6

}7

8

report.numeric = function(x) {9

 "I'm a numeric!"10

}11

37Sta 523 - Fall 2023

Conclusions?
From UseMethods R documentation:

From Advanced R:

If the object does not have a class attribute, it has an implicit class. Matrices and
arrays have class “matrix” or “array” followed by the class of the underlying vector.
Most vectors have class the result of mode(x), except that integer vectors have class
c("integer", "numeric") and real vectors have class c("double", "numeric").

How does UseMethod() work? It basically creates a vector of method names,
paste0(“generic”, “.”, c(class(x), “default”)), and then looks for each potential
method in turn.

Why?

See @WhyDoesR

38Sta 523 - Fall 2023

https://twitter.com/WhyDoesR

Sta 523 - Fall 2023

