
Error checking, functions,
and loops

Lecture 03

Dr. Colin Rundel

1Sta 523 - Fall 2023

Error Checking

3Sta 523 - Fall 2023

stop and stopifnot
Often we want to validate user input, function arguments, or other assumptions
in our code - if our assumptions are not met then we often want to report/throw
an error and stop execution.

ok = FALSE1

if (!ok)1

 stop("Things are not ok.")2

Error in eval(expr, envir, enclos): Things are not ok.

stopifnot(ok)1

Error: ok is not TRUE

Note - an error (like the one generated by stop) will prevent an RMarkdown or Quarto document from compiling
4Sta 523 - Fall 2023

Style choices
Do stuff: Do stuff (better):

if (condition_one) {1

 2

 ## Do stuff3

 4

} else if (condition_two) {5

 6

 ## Do other stuff7

 8

} else if (condition_error) {9

 stop("Condition error occured")10

}11

Do stuff better1

if (condition_error) {2

 stop("Condition error occured")3

}4

5

if (condition_one) {6

 7

 ## Do stuff8

 9

} else if (condition_two) {10

 11

 ## Do other stuff12

 13

}14

5Sta 523 - Fall 2023

Exercise 1
Write a set of conditional(s) that satisfies the following requirements,

If x is greater than 3 and y is less than or equal to 3 then print “Hello world!”

Otherwise if x is greater than 3 print “!dlrow olleH”

If x is less than or equal to 3 then print “Something else …”

stop() execution if x is odd and y is even and report an error, don’t print any
of the text strings above.

Test out your code by trying various values of x and y.

05:00 6Sta 523 - Fall 2023

Why errors?
R has a spectrum of output that can be provided to users,

Printed output (i.e. cat(), print())

Diagnostic messages (i.e. message())

Warnings (i.e. warning())

Errors (i.e. stop(), stopifnot())

Each of these provides outputs while also providing signals which can be
interacted with programmatically (e.g. catching errors or treating warnings as
errors).

7Sta 523 - Fall 2023

Functions

9Sta 523 - Fall 2023

What is a function
Functions are abstractions in programming languages that allow us to
modularize our code into small “self contained” units.

In general the goals of writing functions is to,

Simplify a complex process or task into smaller sub-steps

Allow for the reuse of code without duplication

Improve the readability of your code

Improve the maintainability of your code

10Sta 523 - Fall 2023

Function Parts
Functions are defined by two components: the arguments (formals) and the
code (body).

Functions are 1st order objects in R and have a mode of function. They are
assigned names like other objects using = or <-.

gcd = function(x1, y1, x2 = 0, y2 = 0) {1

 R = 6371 # Earth mean radius in km2

 3

 # distance in km4

 acos(sin(y1)*sin(y2) + cos(y1)*cos(y2) * cos(x2-x1)) * R5

}6

typeof(gcd)1

[1] "closure"

mode(gcd)1

[1] "function"

We use mode here because there are two kinds of functions in R, closures and primitive functions (with type
11Sta 523 - Fall 2023

Accessing function elements
str(formals(gcd))1

Dotted pair list of 4

 $ x1: symbol

 $ y1: symbol

 $ x2: num 0

 $ y2: num 0

body(gcd)1

{

 R = 6371

 acos(sin(y1) * sin(y2) + cos(y1) *

cos(y2) * cos(x2 - x1)) *

 R

}

Note when using body() here the code we get back has had comments removed, if you want to access the full
12Sta 523 - Fall 2023

Return values
As with most other languages, functions are most often used to process inputs
and return a value as output. There are two approaches to returning values from
functions in R - explicit and implicit returns.

Explicit - using one or more return
function calls

Implicit - return value of the last
expression is returned.

f = function(x) {1

 return(x * x)2

}3

f(2)4

[1] 4

g = function(x) {1

 x * x2

}3

g(3)4

[1] 9

Most expressions in R return a value even if this may not be obvious at the time
13Sta 523 - Fall 2023

Invisible returns
Many functions in R make use of an invisible return value

f = function(x) {1

 print(x)2

}3

4

y = f(1)5

[1] 1

y1

[1] 1

g = function(x) {1

 invisible(x)2

}3

g(2)1

z = g(2)1

z2

[1] 2

14Sta 523 - Fall 2023

Returning multiple values
If we want a function to return more than one value we can group results using
atomic vectors or lists.

More on lists next time

f = function(x) {1

 c(x, x^2, x^3)2

}3

4

f(1:2)5

[1] 1 2 1 4 1 8

g = function(x) {1

 list(x, "hello")2

}3

4

g(1:2)5

[[1]]

[1] 1 2

[[2]]

[1] "hello"

15Sta 523 - Fall 2023

Argument names
When defining a function we explicitly define names for the arguments, which
become variables within the scope of the function.

When calling a function we can use these names to pass arguments in an
alternative order.

f = function(x, y, z) {1

 paste0("x=", x, " y=", y, " z=", z)2

}3

f(1, 2, 3)1

[1] "x=1 y=2 z=3"

f(z=1, x=2, y=3)1

[1] "x=2 y=3 z=1"

f(1, 2, 3, 4)1

Error in f(1, 2, 3, 4): unused

argument (4)

f(y=2, 1, 3)1

[1] "x=1 y=2 z=3"

f(y=2, 1, x=3)1

[1] "x=3 y=2 z=1"

f(1, 2, m=3)1

Error in f(1, 2, m = 3): unused

argument (m = 3)
16Sta 523 - Fall 2023

Argument defaults
It is also possible to give function arguments default values, so that they don’t
need to be provided every time the function is called.

f = function(x, y=1, z=1) {1

 paste0("x=", x, " y=", y, " z=", z)2

}3

f(3)1

[1] "x=3 y=1 z=1"

f(x=3)1

[1] "x=3 y=1 z=1"

f(z=3, x=2)1

[1] "x=2 y=1 z=3"

f(y=2, 2)1

[1] "x=2 y=2 z=1"

f()1

Error in f(): argument "x" is missing, with no default

This ability to free mix the ordering of named and unnamed arguments is fairly unique to R
17Sta 523 - Fall 2023

Scope
R has generous scoping rules, if it can’t find a variable in the current scope
(e.g. a function’s body) it will look for it in the next higher scope, and so on until
it runs out of environments or an object with that name is found.

y = 11

2

f = function(x) {3

 x + y4

}5

6

f(3)7

[1] 4

y = 11

2

g = function(x) {3

 y = 24

 x + y5

}6

7

g(3)8

[1] 5

y1

[1] 1

18Sta 523 - Fall 2023

Scope persistance
Additionally, variables defined within a scope only persist for the duration of
that scope, and do not overwrite variables at higher scope(s).

x = 11

y = 12

z = 13

4

f = function() {5

 y = 26

 g = function() {7

 z = 38

 return(x + y + z)9

 }10

 return(g())11

}12

f()1

[1] 6

c(x,y,z)1

[1] 1 1 1

R supports global assignment via <<-, generally using global variables is considered bad practice and should be
19Sta 523 - Fall 2023

Exercise 2 - scope
What is the output of the following code? Explain why.

z = 11

2

f = function(x, y, z) {3

 z = x+y4

5

 g = function(m = x, n = y) {6

 m/z + n/z7

 }8

9

 z * g()10

}11

12

f(1, 2, x = 3)13

03:00 20Sta 523 - Fall 2023

Lazy evaluation
Another interesting / unique feature of R is that function arguments are lazily
evaluated, which means they are only evaluated when needed.

f = function(x) {1

 TRUE2

}3

g = function(x) {1

 x2

 TRUE3

}4

f(1)1

[1] TRUE

g(1)1

[1] TRUE

f(stop("Error"))1

[1] TRUE

g(stop("Error"))1

Error in g(stop("Error")): Error

21Sta 523 - Fall 2023

More practical lazy evaluation
The previous example is not particularly useful, a more common use for this
lazy evaluation is that this enables us define arguments as expressions of other
arguments.

f = function(x, y=x+1, z=1) {1

 x = x + z2

 y3

}4

5

f(x=1)6

[1] 3

f(x=1, z=2)1

[1] 4

22Sta 523 - Fall 2023

Operators as functions
In R, operators are actually a special type of function - using backticks around
the operator we can write them as functions.

`+`1

function (e1, e2) .Primitive("+")

typeof(`+`)1

[1] "builtin"

x = 4:11

x + 22

[1] 6 5 4 3

`+`(x, 2)1

[1] 6 5 4 3

23Sta 523 - Fall 2023

Getting Help
Prefixing any function name with a ? will open the related help file for that
function.

?`+`1

?sum2

For functions not in the base package, you can generally see their
implementation by entering the function name without parentheses (or using
the body function).

lm1

function (formula, data, subset, weights, na.action, method = "qr",

 model = TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE,

 contrasts = NULL, offset, ...)

{

 ret.x <- x

 ret.y <- y

 cl <- match.call()

 mf <- match.call(expand.dots = FALSE)

 m <- match(c("formula", "data", "subset", "weights", "na.action",

 "offset"), names(mf), 0L)

 mf <- mf[c(1L, m)]

 mf$drop.unused.levels <- TRUE 24Sta 523 - Fall 2023

Less Helpful Examples
list1

function (...) .Primitive("list")

`[`1

.Primitive("[")

sum1

function (..., na.rm = FALSE) .Primitive("sum")

`+`1

function (e1, e2) .Primitive("+")

For the curious the will help you track down the source code of these functions.lookup package
25Sta 523 - Fall 2023

https://github.com/jimhester/lookup

Loops

27Sta 523 - Fall 2023

for loops
There are the most common type of loop in R - given a vector it iterates
through the elements and evaluate the code expression for each value.

is_even = function(x) {1

 res = c()2

 3

 for(val in x) {4

 res = c(res, val %% 2 == 0)5

 }6

 7

 res8

}9

10

is_even(1:10)11

 [1] FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE

is_even(seq(1,5,2))1

[1] FALSE FALSE FALSE

28Sta 523 - Fall 2023

while loops
This loop repeats evaluation of the code expression until the condition is not
met (i.e. evaluates to FALSE)

make_seq = function(from = 1, to = 1, by = 1) {1

 res = c(from)2

 cur = from3

 4

 while(cur+by <= to) {5

 cur = cur + by6

 res = c(res, cur)7

 }8

 9

 res10

}11

12

make_seq(1, 6)13

[1] 1 2 3 4 5 6

make_seq(1, 6, 2)1

[1] 1 3 5

29Sta 523 - Fall 2023

repeat loops
Equivalent to a while(TRUE){} loop, it repeats until a break statement is
encountered

make_seq2 = function(from = 1, to = 1, by = 1) {1

 res = c(from)2

 cur = from3

 4

 repeat {5

 cur = cur + by6

 if (cur > to)7

 break8

 res = c(res, cur)9

 }10

 11

 res12

}13

14

make_seq2(1, 6)15

[1] 1 2 3 4 5 6

make_seq2(1, 6, 2)1

30Sta 523 - Fall 2023

Special keywords - break and next
These are special actions that only work inside of a loop

break - ends the current loop (inner-most)

next - ends the current iteration

f = function(x) {1

 res = c()2

 for(i in x) {3

 if (i %% 2 == 0)4

 break5

 res = c(res, i)6

 }7

 res8

}9

f(1:10)10

[1] 1

f(c(1,1,1,2,2,3))1

[1] 1 1 1

g = function(x) {1

 res = c()2

 for(i in x) {3

 if (i %% 2 == 0)4

 next5

 res = c(res,i)6

 }7

 res8

}9

g(1:10)10

[1] 1 3 5 7 9

g(c(1,1,1,2,2,3))1

[1] 1 1 1 3

31Sta 523 - Fall 2023

Some helpful functions
Often we want to use a loop across the indexes of an object and not the
elements themselves. There are several useful functions to help you do this: :,
length, seq, seq_along, seq_len, etc.

4:71

[1] 4 5 6 7

length(4:7)1

[1] 4

seq(4,7)1

[1] 4 5 6 7

seq_along(4:7)1

[1] 1 2 3 4

seq_len(length(4:7))1

[1] 1 2 3 4

seq(4,7,by=2)1

[1] 4 6

32Sta 523 - Fall 2023

Avoid using 1:length(x)
A common loop construction you’ll see in a lot of R code is using 1:length(x)
to generate a vector of index values for the vector x.

f = function(x) {1

 for(i in 1:length(x)) {2

 print(i)3

 }4

}5

6

f(2:1)7

[1] 1

[1] 2

f(2)1

[1] 1

f(integer())1

[1] 1

[1] 0

g = function(x) {1

 for(i in seq_along(x)) {2

 print(i)3

 }4

}5

6

g(2:1)7

[1] 1

[1] 2

g(2)1

[1] 1

g(integer())1

33Sta 523 - Fall 2023

What was the problem?
length(integer())1

[1] 0

1:length(integer())1

[1] 1 0

seq_along(integer())1

integer(0)

34Sta 523 - Fall 2023

Exercise 3
Below is a vector containing all prime numbers between 2 and 100:

If you were given the vector x = c(3,4,12,19,23,51,61,63,78), write the R code
necessary to print only the values of x that are not prime (without using
subsetting or the %in% operator).

Your code should use nested loops to iterate through the vector of primes and
x.

primes = c(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 1

 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97)2

05:00 35Sta 523 - Fall 2023

Sta 523 - Fall 2023

