
Logic and types in R
Lecture 02

Dr. Colin Rundel

1Sta 523 - Fall 2023

In R (almost)
everything is a vector

3Sta 523 - Fall 2023

Vectors
The fundamental building block of data in R are vectors (collections of related
values, objects, data structures, etc).

R has two types of vectors:

atomic vectors (vectors)

homogeneous collections of the same type (e.g. all true/false values, all
numbers, or all character strings).

generic vectors (lists)

heterogeneous collections of any type of R object, even other lists
(meaning they can have a hierarchical/tree-like structure).

4Sta 523 - Fall 2023

Atomic Vectors

6Sta 523 - Fall 2023

Atomic Vectors
R has six atomic vector types, we can check the type of any object in R using
the typeof() function

typeof() mode()

logical logical

double numeric

integer numeric

character character

complex complex

raw raw

Mode is a higher level abstraction, we will discuss this in detail a bit later.

7Sta 523 - Fall 2023

logical - boolean values (TRUE and FALSE)
typeof(TRUE)1

[1] "logical"

typeof(FALSE)1

[1] "logical"

mode(TRUE)1

[1] "logical"

mode(FALSE)1

[1] "logical"

R will let you use T and F as shortcuts to TRUE and FALSE, this is a bad practice as these
values are actually global variables that can be overwritten.

T1

[1] TRUE

T = FALSE1

T2

[1] FALSE

8Sta 523 - Fall 2023

character - text strings
Either single or double quotes are fine, opening and closing quote must match.

typeof("hello")1

[1] "character"

typeof('world')1

[1] "character"

mode("hello")1

[1] "character"

mode('world')1

[1] "character"

Quote characters can be included by escaping or using a non-matching quote.

"abc'123"1

[1] "abc'123"

'abc"123'1

[1] "abc\"123"

"abc\"123"1

[1] "abc\"123"

'abc\'123'1

[1] "abc'123"

RStudio’s syntax highlighting is helpful here to indicate where it thinks a string begins and ends.
9Sta 523 - Fall 2023

Numeric types
double - floating point values (these are the default numerical type)

typeof(1.33)1

[1] "double"

typeof(7)1

[1] "double"

mode(1.33)1

[1] "numeric"

mode(7)1

[1] "numeric"

integer - integer values (literals are indicated with an L suffix)

typeof(7L)1

[1] "integer"

typeof(1:3)1

[1] "integer"

mode(7L)1

[1] "numeric"

mode(1:3)1

[1] "numeric"

10Sta 523 - Fall 2023

Concatenation
Atomic vectors can be grown (combined) using the combine c() function.

c(1, 2, 3)1

[1] 1 2 3

c("Hello", "World!")1

[1] "Hello" "World!"

c(1, 1:10)1

 [1] 1 1 2 3 4 5 6 7 8 9 10

c(1,c(2, c(3)))1

[1] 1 2 3

Note - atomic vectors are inherently flat.
11Sta 523 - Fall 2023

Inspecting types
typeof(x) - returns a character vector (length 1) of the type of object x.

mode(x) - returns a character vector (length 1) of the mode of object x.

typeof(1)1

[1] "double"

typeof(1L)1

[1] "integer"

typeof("A")1

[1] "character"

typeof(TRUE)1

[1] "logical"

mode(1)1

[1] "numeric"

mode(1L)1

[1] "numeric"

mode("A")1

[1] "character"

mode(TRUE)1

[1] "logical"

12Sta 523 - Fall 2023

Type predicates
is.logical(x) - returns TRUE if x has type logical.

is.character(x) - returns TRUE if x has type character.

is.double(x) - returns TRUE if x has type double.

is.integer(x) - returns TRUE if x has type integer.

is.numeric(x) - returns TRUE if x has mode numeric.

is.integer(1)1

[1] FALSE

is.integer(1L)1

[1] TRUE

is.integer(3:7)1

[1] TRUE

is.double(1)1

[1] TRUE

is.double(1L)1

[1] FALSE

is.double(3:8)1

[1] FALSE

is.numeric(1)1

[1] TRUE

is.numeric(1L)1

[1] TRUE

is.numeric(3:7)1

[1] TRUE

13Sta 523 - Fall 2023

Other useful predicates
is.atomic(x) - returns TRUE if x is an atomic vector.

is.list(x) - returns TRUE if x is a list (generic vector).

is.vector(x) - returns TRUE if x is either an atomic or generic vector.

is.atomic(c(1,2,3))1

[1] TRUE

is.list(c(1,2,3))1

[1] FALSE

is.vector(c(1,2,3))1

[1] TRUE

is.atomic(list(1,2,3))1

[1] FALSE

is.list(list(1,2,3))1

[1] TRUE

is.vector(list(1,2,3))1

[1] TRUE

14Sta 523 - Fall 2023

Type Coercion
R is a dynamically typed language – it will automatically convert between most
types without raising warnings or errors. Keep in mind that atomic vectors must
always contain values of the same type.

c(1, "Hello")1

[1] "1" "Hello"

c(FALSE, 3L)1

[1] 0 3

c(1.2, 3L)1

[1] 1.2 3.0

c(FALSE, "Hello")1

[1] "FALSE" "Hello"

15Sta 523 - Fall 2023

Operator coercion
Builtin operators and functions (e.g. +, &, log(), etc.) will generally attempt to
coerce values to an appropriate type for the given operation

3.1+1L1

[1] 4.1

5 + FALSE1

[1] 5

log(1)1

[1] 0

log(TRUE)1

[1] 0

TRUE & FALSE1

[1] FALSE

TRUE & 71

[1] TRUE

TRUE | FALSE1

[1] TRUE

FALSE | !51

[1] FALSE

16Sta 523 - Fall 2023

Explicit Coercion
Most of the is functions we just saw have an as variant which can be used for
explicit coercion.

as.logical(5.2)1

[1] TRUE

as.character(TRUE)1

[1] "TRUE"

as.integer(pi)1

[1] 3

as.numeric(FALSE)1

[1] 0

as.double("7.2")1

[1] 7.2

as.double("one")1

[1] NA

17Sta 523 - Fall 2023

Missing Values

19Sta 523 - Fall 2023

Missing Values
R uses NA to represent missing values in its data structures, what may not be
obvious is that there are different NAs for different atomic types.

typeof(NA)1

[1] "logical"

typeof(NA+1)1

[1] "double"

typeof(NA+1L)1

[1] "integer"

typeof(c(NA,""))1

[1] "character"

typeof(NA_character_)1

[1] "character"

typeof(NA_real_)1

[1] "double"

typeof(NA_integer_)1

[1] "integer"

typeof(NA_complex_)1

[1] "complex"

20Sta 523 - Fall 2023

NA “stickiness”
Because NAs represent missing values it makes sense that any calculation using
them should also be missing.

Summarizing functions (e.g. sum(), mean(), sd(), etc.) will often have a na.rm
argument which will allow you to drop missing values.

1 + NA1

[1] NA

1 / NA1

[1] NA

NA * 51

[1] NA

sqrt(NA)1

[1] NA

3^NA1

[1] NA

sum(c(1, 2, 3, NA))1

[1] NA

sum(c(1, 2, 3, NA), na.rm = TRUE)1

[1] 6

mean(c(1, 2, 3, NA), na.rm = TRUE)1

[1] 2

21Sta 523 - Fall 2023

NAs are not always sticky
A useful mental model for NAs is to consider them as a unknown value that
could take any of the possible values for a type.

For numbers or characters this isn’t very helpful, but for a logical value we know
that the value must either be TRUE or FALSE and we can use that when deciding
what value to return.

TRUE & NA1

[1] NA

FALSE & NA1

[1] FALSE

TRUE | NA1

[1] TRUE

FALSE | NA1

[1] NA 22Sta 523 - Fall 2023

Other Special values (double)
These are defined as part of the IEEE floating point standard (not unique to R)

NaN - Not a number

Inf - Positive infinity

-Inf - Negative infinity

pi / 01

[1] Inf

0 / 01

[1] NaN

1/0 + 1/01

[1] Inf

1/0 - 1/01

[1] NaN

NaN / NA1

[1] NA

NaN * NA1

[1] NA

23Sta 523 - Fall 2023

Testing for Inf and NaN
NaN and Inf don’t have the same testing issues that NAs do, but there are still
convenience functions for testing for these types of values

is.finite(Inf)1

[1] FALSE

is.infinite(-Inf)1

[1] TRUE

is.nan(Inf)1

[1] FALSE

is.nan(-Inf)1

[1] FALSE

Inf > 11

[1] TRUE

-Inf > 11

[1] FALSE

is.finite(NaN)1

[1] FALSE

is.infinite(NaN)1

[1] FALSE

is.nan(NaN)1

[1] TRUE

is.finite(NA)1

[1] FALSE

is.infinite(NA)1

[1] FALSE

is.nan(NA)1

[1] FALSE

24Sta 523 - Fall 2023

Coercion for infinity and NaN
First remember that Inf, -Inf, and NaN are doubles, however their coercion
behavior is not the same as other doubles

as.integer(Inf)1

[1] NA

as.integer(NaN)1

[1] NA

as.logical(Inf)1

[1] TRUE

as.logical(-Inf)1

[1] TRUE

as.logical(NaN)1

[1] NA

as.character(Inf)1

[1] "Inf"

as.character(-Inf)1

[1] "-Inf"

as.character(NaN)1

[1] "NaN"

25Sta 523 - Fall 2023

Exercise 1
Part 1
What is the type of the following vectors? Explain why they have that type.

c(1, NA+1L, "C")

c(1L / 0, NA)

c(1:3, 5)

c(3L, NaN+1L)

c(NA, TRUE)

Part 2
Considering only the four (common) data types, what is R’s implicit type
conversion hierarchy (from highest priority to lowest priority)?

Hint - think about the pairwise interactions between types. 05:00 26Sta 523 - Fall 2023

Conditionals & Control Flow

28Sta 523 - Fall 2023

Logical (boolean) operators

Operator Operation Vectorized?

x | y or Yes

x & y and Yes

!x not Yes

x || y or No

x && y and No

xor(x, y) exclusive or Yes

29Sta 523 - Fall 2023

Vectorized?
x = c(TRUE,FALSE,TRUE)1

y = c(FALSE,TRUE,TRUE)2

x | y1

[1] TRUE TRUE TRUE

x & y1

[1] FALSE FALSE TRUE

x || y1

Error in x || y: 'length = 3' in

coercion to 'logical(1)'

x && y1

Error in x && y: 'length = 3' in

coercion to 'logical(1)'

Note previously (before R 4.3) both || and && only use the first value in the vector, all other values are ignored,
30Sta 523 - Fall 2023

Vectorization and math
Almost all of the basic mathematical operations (and many other functions) in
R are vectorized.

c(1, 2, 3) + c(3, 2, 1)1

[1] 4 4 4

c(1, 2, 3) / c(3, 2, 1)1

[1] 0.3333333 1.0000000 3.0000000

log(c(1, 3, 0))1

[1] 0.000000 1.098612 -Inf

sin(c(1, 2, 3))1

[1] 0.8414710 0.9092974 0.1411200

31Sta 523 - Fall 2023

Length coercion (aka recycling)
If the lengths of the vector do not match, then the shorter vector has its values
recycled to match the length of the longer vector.

x = c(TRUE, FALSE, TRUE)1

y = c(TRUE)2

z = c(FALSE, TRUE)3

x | y1

[1] TRUE TRUE TRUE

x & y1

[1] TRUE FALSE TRUE

y | z1

[1] TRUE TRUE

y & z1

[1] FALSE TRUE

x | z1

[1] TRUE TRUE TRUE

32Sta 523 - Fall 2023

Length coercion and math
The same length coercion rules apply for most basic mathematical operators,

x = c(1, 2, 3)1

y = c(5, 4)2

z = 10L3

x + x1

[1] 2 4 6

x + z1

[1] 11 12 13

y / z1

[1] 0.5 0.4

log(x)+z1

[1] 10.00000 10.69315 11.09861

x %% y1

[1] 1 2 3

33Sta 523 - Fall 2023

Comparison operators

Operator Comparison Vectorized?

x < y less than Yes

x > y greater than Yes

x <= y less than or equal to Yes

x >= y greater than or equal to Yes

x != y not equal to Yes

x == y equal to Yes

x %in% y contains Yes (over x)

over x here means the returned value will have the length of x regardless of the length of y
34Sta 523 - Fall 2023

Comparisons
x = c("A","B","C")1

y = c("A")2

x == y1

[1] TRUE FALSE FALSE

x != y1

[1] FALSE TRUE TRUE

x %in% y1

[1] TRUE FALSE FALSE

y %in% x1

[1] TRUE

Type coercion also applies for comparison opperators which can result in
interesting behavior

TRUE == "TRUE"1

[1] TRUE

FALSE == 11

[1] FALSE

TRUE == 11

[1] TRUE

TRUE == 51

[1] FALSE

35Sta 523 - Fall 2023

> & < with characters
While maybe somewhat unexpected, these comparison operators can be used
character values.

"A" < "B"1

[1] TRUE

"A" > "B"1

[1] FALSE

"A" < "a"1

[1] FALSE

"a" > "!"1

[1] TRUE

"Good" < "Goodbye"1

[1] TRUE

c("Alice", "Bob", "Carol") <= "B"1

[1] TRUE FALSE FALSE

Note - to better understand how this works / the ordering used take a look at ASCII code
36Sta 523 - Fall 2023

https://www.ascii-code.com/

Conditional Control Flow
Conditional execution of code blocks is achieved via if statements.

x = c(1, 3)1

if (3 %in% x) {1

 print("Contains 3!")2

}3

[1] "Contains 3!"

if (1 %in% x)1

 print("Contains 1!")2

[1] "Contains 1!"

if (5 %in% x) {1

 print("Contains 5!")2

}3

if (5 %in% x) {1

 print("Contains 5!")2

} else {3

 print("Does not contain 5!")4

}5

[1] "Does not contain 5!"

37Sta 523 - Fall 2023

if is not vectorized
x = c(1, 3)1

if (x == 1)1

 print("x is 1!")2

Error in if (x == 1) print("x is 1!"): the condition has length > 1

if (x == 3)1

 print("x is 3!")2

Error in if (x == 3) print("x is 3!"): the condition has length > 1

Note that the behavior seen above (thrown errors) is new in R 4.2, previous versions will only throw warnings
38Sta 523 - Fall 2023

Collapsing logical vectors
There are a couple of helper functions for collapsing a logical vector down to a
single value: any, all

x = c(3,4,1)1

x >= 21

[1] TRUE TRUE FALSE

any(x >= 2)1

[1] TRUE

all(x >= 2)1

[1] FALSE

x <= 41

[1] TRUE TRUE TRUE

any(x <= 4)1

[1] TRUE

all(x <= 4)1

[1] TRUE

if (any(x == 3)) 1

 print("x contains 3!")2

[1] "x contains 3!"

39Sta 523 - Fall 2023

else if and else
x = 31

2

if (x < 0) {3

 "x is negative"4

} else if (x > 0) {5

 "x is positive"6

} else {7

 "x is zero"8

}9

[1] "x is positive"

x = 01

2

if (x < 0) {3

 "x is negative"4

} else if (x > 0) {5

 "x is positive"6

} else {7

 "x is zero"8

}9

[1] "x is zero"

40Sta 523 - Fall 2023

if and return
R’s if conditional statements return a value (invisibly), the two following
implementations are equivalent.

x = 51

s = if (x %% 2 == 0) {1

 x / 22

} else {3

 3*x + 14

}5

s1

[1] 16

x = 51

if (x %% 2 == 0) {1

 s = x / 22

} else {3

 s = 3*x + 14

}5

s1

[1] 16

Notice that conditional expressions are evaluated in the parent scope.
41Sta 523 - Fall 2023

Exercise 2
Take a look at the following code below on the left, without running it in R what
do you expect the outcome will be for each call on the right?

f = function(x) {1

 # Check small prime2

 if (x > 10 || x < -10) {3

 stop("Input too big")4

 } else if (x %in% c(2, 3, 5, 7)) 5

 cat("Input is prime!\n")6

 } else if (x %% 2 == 0) {7

 cat("Input is even!\n")8

 } else if (x %% 2 == 1) {9

 cat("Input is odd!\n")10

 }11

}12

f(1)1

f(3)2

f(8)3

f(-1)4

f(-3)5

f(1:2)6

f("0")7

f("3")8

f("zero")9

More on functions next time 05:00 42Sta 523 - Fall 2023

Conditionals and missing values
NAs can be particularly problematic for control flow,

if (2 != NA) {1

 "Here"2

}3

Error in if (2 != NA) {: missing value where

TRUE/FALSE needed

2 != NA1

[1] NA

if (all(c(1,2,NA,4) >= 1)) {1

 "There"2

}3

Error in if (all(c(1, 2, NA, 4) >= 1)) {: missing

value where TRUE/FALSE needed

all(c(1,2,NA,4) >= 1)1

[1] NA

if (any(c(1,2,NA,4) >= 1)) {1

 "There"2

}3

[1] "There"

any(c(1,2,NA,4) >= 1)1

[1] TRUE

43Sta 523 - Fall 2023

Testing for NA
To explicitly test if a value is missing it is necessary to use is.na (often along
with any or all).

NA == NA1

[1] NA

is.na(NA)1

[1] TRUE

is.na(1)1

[1] FALSE

is.na(c(1,2,3,NA))1

[1] FALSE FALSE FALSE TRUE

any(is.na(c(1,2,3,NA)))1

[1] TRUE

all(is.na(c(1,2,3,NA)))1

[1] FALSE

44Sta 523 - Fall 2023

Sta 523 - Fall 2023

